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Color Reproduction From Noisy CFA
Data of Single Sensor Digital Cameras
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Abstract—Single sensor digital color still/video cameras capture
images using a color filter array (CFA) and require color interpo-
lation (demosaicking) to reconstruct full color images. The color
reproduction has to combat sensor noises which are channel depen-
dent. If untreated in demosaicking, sensor noises can cause color
artifacts that are hard to remove later by a separate denoising
process, because the demosaicking process complicates the noise
characteristics by blending noises of different color channels. This
paper presents a joint demosaicking-denoising approach to over-
come this difficulty. The color image is restored from noisy mosaic
data in two steps. First, the difference signals of color channels
are estimated by linear minimum mean square-error estimation.
This process exploits both spectral and spatial correlations to si-
multaneously suppress sensor noise and interpolation error. With
the estimated difference signals, the full resolution green channel
is recovered. The second step involves in a wavelet-based denoising
process to remove the CFA channel-dependent noises from the re-
constructed green channel. The red and blue channels are subse-
quently recovered. Simulated and real CFA mosaic data are used to
evaluate the performance of the proposed joint demosaicking-de-
noising scheme and compare it with many recently developed so-
phisticated demosaicking and denoising schemes.

Index Terms—Bayer pattern, color demosaicking, color filter
array (CFA), denoising, wavelet.

I. INTRODUCTION

SINGLE sensor digital cameras use a color filter array
(CFA), such as the Bayer pattern [1], to capture images.

At each pixel, only one of the primary colors (e.g., red, green,
and blue) is sampled. The sensor readings are corrupted by
noises, which are channel dependent (i.e., the noise statistics
vary with different channels). This poses a challenge to color
image restoration: the interpolation of missing spectral samples
amongst sensor noises. If color interpolation (color demo-
saicking) and denoising are performed in tandem, as in the
current practice, then the demosaicking process complicates
the task of denoising by blending the sensor noises across color
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channels, which may even correlate the noises with signals. As
a result, color demosaicking, if done without treating the sensor
noises, can introduce color artifacts that are difficult to remove
by a separate denoising process. To prevent demosaicking from
producing additional artifacts, we propose a new approach that
performs color demosaicking and image denoising jointly.

Up to now most demosaicking techniques [3]–[24] assumed
noiseless CFA data. The noiseless assumption is clearly invalid
in practice. Not only for the low cost and/or resource constrained
imaging devices, corruptive noise is inherent to image acquisi-
tion, but also for the high-end imaging devices such as high res-
olution digital cinema cameras, noise corruption can be severe
since the pixel is very small and prone to noise. A convenient
solution is to employ a separate denoising process after demo-
saicking. However, this separation approach is problematic. If
left untreated at the demosaicking step, sensor noises can be root
of new color artifacts that become more difficult to remove by a
subsequent denoising process. In general sensor noises exhibit
distinct statistics in different channels and, hence, are easier to
model and remove without being blended by the demosaicking
process. Interpolating spectral noises together with the signal in
the demosaicking process produces compounded noises that are
difficult to characterize. To aggravate the problem, the demo-
saicking process can introduce dependency between the com-
pound noises and image signal.

Recently, Hirakawa and Parks [38] developed a joint demo-
saicking-denoising algorithm. They studied signal-dependent
noises of CMOS digital cameras. Treating both demosaicking
and denoising as a problem of estimating a sample from its
neighbors, the authors tried to adaptively find a filter to ac-
complish the two tasks simultaneously. They used the total
least square (TLS) denoising technique in [37] to determine the
filter under some constraints of the CFA pattern. This scheme
is shown to perform better than many “demosaicking first
denoising later” methods.

This paper presents a new, computationally efficient joint de-
mosaicking-denoising scheme to restore the full color image
from the noisy mosaic data. The new technique is developed
for ubiquitous Bayer pattern, but it can be extended to other
CFA patterns. To take advantage of spectral correlations, we es-
timate the red-green and blue-green difference images, called
primary difference signals (PDS), rather than directly recover
the missing color samples. A linear model is developed to rep-
resent and estimate the red-green and blue-green PDS signals.
The observed PDS measurements are represented as the sum of
true PDS, diffused sensor noise (DSN) and color interpolation
error (IE). Based on the second order statistics of these com-
ponents, an adaptive LMMSE method is used to estimate the
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PDS from the noisy measurements. From the estimated PDS,
we derive a full resolution green image, on which the original
sensor noise is superimposed. The sensor noise is, however, non-
stationary, for that it is channel-dependent. This renders tradi-
tional denoising algorithms invalid that assume stationary ad-
ditive noise. A new wavelet-based denoising algorithm is, thus,
developed to remove this specific nonstationary noise from the
green channel. Anchored on the denoised green image, the red
and blue channels are, consequently, recovered.

The rest of the paper is structured as follows. Section II intro-
duces the concepts of primary difference signal, DSN and color
IE. Section III discusses the estimation of true PDS from the
noisy measurements. Section IV presents the wavelet-based de-
noising scheme to remove the particular type of nonstationary
noise from the green channel. Section V turns to the reconstruc-
tion of red and blue channels. Experimental results on simulated
and real CFA data are shown in Section VI. Section VII con-
cludes the paper.

II. MODELING NOISY PRIMARY DIFFERENCE SIGNAL

The spectral correlations between color channels play a cen-
tral role in color demosaicking, and they are also valuable prior
knowledge for removing sensor noises. The high spectral corre-
lations are due to the fact that most natural scenes consist pre-
dominantly of pastoral colors. Fully saturated colors are rare.
Based on this observation, our approach of joint demosaicking-
denoising works with the so-called PDS, defined as

or , rather than individual color com-
ponent signals. Since and are much smoother than
the original , , and signals, they can be better estimated
from noisy measurements. In the definition of PDS, we use the
green channel as the anchor, because in the Bayer CFA pattern
(by far the most popular mosaic pattern used in digital cameras),
the sampling frequency of green channel is twice that of red and
blue channels. The sensitivity of the human visual system peaks
at the green wavelength, which lies in between those of red and
blue in the visible spectrum. The green-red and green-blue cor-
relations are statistically greater than the red-blue correlation
[11].

Due to the symmetry of and with respect to , it suffices
to study the signal in the following discussions. All results
can be extended to using the symmetry. To simplify the
notations, we will drop the subscripts and refer to as in
the following development. Given an estimate of , one can
reconstruct the missing green samples as at the red
pixels or at the blue pixels.

We assume that sensor noises are additive but channel-depen-
dent. For each channel, we assume the noise is Gaussian white
with zero mean. The sensor readings are

(1)

where , , and are the sensor noise in the red, green,
and blue channels, respectively, and , , and are the true
sample values to be recovered. The symbol “ ” means that the
sample is noise corrupted. The statistics of , , and may
be different, but the noises are mutually uncorrelated between

Fig. 1. Column and row of alternating green and red samples intersect at a red
sampling position.

the channels. The standard deviations of , , and are de-
noted by , , and .

In [38], Hirakawa and Parks assumed the sensor noise to be
signal-dependent, being proportional to the signal magnitude
plus a base level. This product noise model may fit some sensors
better, but it makes denoising computationally far more expen-
sive. For this reason, most existing image denoising techniques
adopt an additive signal-independent noise model. The channel-
dependent noise model adopted by this paper is a tradeoff be-
tween the signal-dependent product noise model and the signal-
independent additive noise model. We allow the noise statistics
to vary in different channels because a given type of sensors be-
haves differently in different wavelengths. On the other hand, we
let sensor noise be independent of signal within each channel to
simplify the denoising algorithm. This simplification does not
materially degrade the visual quality of denoised images be-
cause the signal-to-noise ratio (SNR) is high anyway when the
signal amplitude is high.

For concreteness and clarity, the following discussions refer
to the mosaic configuration of Fig. 1, in which the PDS is
to be estimated. In Fig. 1, at the center of the window is a
noisy red sensor reading. Its interlaced green and red neighbors
in horizontal direction are labeled, respectively, as ,

, and , ;
similarly, the green and red vertical neighbors of are,
respectively, , , and ,

. By convention, .
We denote by and the noiseless counterparts of and

, , i.e.,

(2)

where and are sensor noises at the corresponding red
and green positions of the CFA pattern.

To obtain some initial measurements of , we need to in-
terpolate the missing green samples at the red pixels and the
missing red samples at the green pixels. It is important to in-
terpolate along the edge direction to prevent interpolation color
artifacts. We adopt the well-known directional color interpola-
tion filter proposed by Adams and Hamilton for its simplicity
[4]–[6]. Referring to Fig. 1, at the position of each red sample
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, we compute both the horizontal and vertical interpolation of
the missing green sample

(3)

In Section III-C, we will see how the two directional estimation
values are optimally fused to improve the directional estimates
of missing green samples.

At the positions of green samples , the missing red samples
are either interpolated horizontally or vertically

(4)

depending on whether the green sample has horizontal red
neighbors or vertical red neighbors.

Let and be the corresponding noise free interpolation
results if noisy sensor readings and are replaced by the
noiseless values and in (3) and (4).

Using the interpolated samples and , we can obtain
coarse measurements of PDS at the positions of red and green
samples in horizontal and vertical directions, respectively

green is interpolated
red is interpolated

(5)

can be rewritten as

(6)

where the noise free term is

green is interpolated
red is interpolated

(7)

and the noise term is shown in (8) at the bottom of the page
The term is the effect of sensor noise on estimated PDS

via directional interpolation, which we call directional DSN.
The term in (6) is another estimate of PDS by interpo-
lating the noiseless CFA data. We denote the difference between

and true PDS as

(9)

Note that the term is purely the directional IE without any
contribution of sensor noises, and it depends only on the true
underlying image downsampled by CFA. Combining (6) and

(9), we have a linear model of PDS

(10)

where is the available noisy measurement of unknown PDS
that contains both the DSN term and the IE term .

The DSN term is a linear combination of channel-dependent
sensor noises , and .

If left untreated, DSN can be a significant contributor to
color artifacts in the reconstructed image. However, as will be
discussed in Section III, a reduction of DSN can be achieved by
exploring its properties different from and .

III. ESTIMATING THE PRIMARY DIFFERENCE SIGNAL

Now with the linear model (10) of PDS , we proceed to
compute two directional estimates of separately using noisy
measurements and of [refer to (5)]. By optimally
fusing these two directional estimates, we generate a full reso-
lution estimate of the green channel, which is then processed in
Section IV.

To simplify the notations, we denote by the unknown PDS
, the associated measurement or . Similarly, we

write as and as when the context makes the associ-
ation clear between these error terms and the estimates in ques-
tion. Consequently, (10) is rewritten as

(11)

A. Power Spectrums of PDS , DSN , and IE

Since DSN term is a linear combination of channel-depen-
dent sensor noises so that it is uncorrelated with PDS and IE
. It was shown in [11] that the IE is zero-mean and nearly

uncorrelated with , and the PDS is a low-pass signal and
a bandpass process in natural scenes. This section will further
show that DSN is a low-pass process. Together, these pieces
of prior information allow us to compute an optimal estimate of

from noisy measurements .
Referring to (8), we see that at the red pixel positions

where green is interpolated, is generated by applying
filter to noises

and in the CFA image; at the green pixel posi-
tions where red is interpolated, is obtained by applying

to and . Be-
cause and are spatially interlaced with each other and
have different statistics, the output noise image will not
be stationary. Nevertheless, can be considered as a “half
stationary” process, which means that the statistics of is
the same as that of . At the red sample positions in

green is interpolated

red is interpolated
(8)
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Fig. 2. (a) Autocorrelation function and (b) the power spectrum density of DSN
�(n).

CFA, it can be derived that the autocorrelation function of is

(12)

Similarly, at the green pixel positions in CFA, we have

(13)

It is observed that with the employed filter , and
are different only at and . If and

are of the same intensity level, then DSN is stationary
and . If the difference between and is
not significant, we see that the difference between
and (i.e., ) and the difference be-
tween and (i.e., ) are not
significant. Therefore, we consider and to be
approximately the same. Letting , the autocorrela-
tion function of and the power spectrum density function

are plotted in Fig. 2(a) and

Fig. 3. Power spectrum densities of (a) x and (b) " for a typical nature image.

(b), respectively. The power spectral density of clearly
shows that is a low-pass process. For comparison, we also
plot in Fig. 3 the power spectrum densities of and for a
typical natural image (other images exhibit similar results).
Comparing Fig. 2 with Fig. 3, we see that the power of
concentrates in a very low-frequency band, while the low-pass
signal has a much wider bandwidth than . In contrast, the IE

is bandpass and is relatively high-frequency dominated.

B. Directional Estimation of the PDS

Based on the linear model (11) and the different character-
istics of , and discussed in the previous section, we es-
timate the unknown PDS from its measurement by using a
spatially adaptive linear minimum mean square-error estimation
(LMMSE) technique. The LMMSE of from is computed as

(14)

Since DSN and IE are zero-mean and , and are mutually
uncorrelated, it follows from (11) and (14) that

(15)

where , , . We also have

(16)

where and .
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From (15), we see that to compute the spatially adaptive
LMMSE estimate of , we need three parameters ,

and . However, these three parameters are not
known as a prior. The only available data are the observations

. Fortunately, with the linear model (11) and the different
characteristics of , and , it is possible for us to estimate

, and adaptively from the neighborhood of
.

We estimate the statistics of and from the neigh-
borhood of by assuming that process is ergodic and
stationary. Denote by

(17)

the window centered at . Because and
are zero mean, the mean of is equal to the mean of .

can be computed by

(18)

The variance of is computed as

(19)

Now only is left to be estimated.
Since that the bandpass IE signal has very little energy in

the low-frequency band while the low-pass PDS signal has
a very narrow bandwidth (referring to Figs. 2 and 3), passing

through a low-pass filter can remove almost all the energy
of . Therefore, we smooth . Denote by the response
sequence of a low-pass filter1 and let

(20)

where “ ” is the convolution operator. Since signal has neg-
ligible contribution of IE signal , we have approximately

(21)

where is the filtering output of bandpass noise signal

(22)

Since bandpass signal has much energy concentrated in the
low-frequency band, its low-pass filtering output can not be
neglected.

We will estimate from the smoothed signal . Denote
by

(23)

1A Gaussian low-pass filter can be employed. The optimal scale of the
Gaussian filter depends on the input signal. To reduce the complexity, we
fix the filter as h = [ 4 9 15 23 26 23 15 9 4 ] =128 in the
experiments.

the window centered at . Because and are
uncorrelated, , the variance of , can then be computed
by

(24)

where is the variance of . Next, we discuss the cal-
culation of .

As we discussed in Section III-A, process (and, hence, ) is
a “half stationary” process due to interlaced structure of red and
green noises and . The variances of are different at
the positions of red and green pixels. At the red pixel positions,

is computed by

(25)

where is the autocorrelation function of at red
pixel positions. Since is obtained by convolving
with and the autocorrelation of at the red pixel
positions is , is computed by [40]

(26)

Similarly, at the green pixel positions, is computed as

(27)

Now we could be able to adaptively estimate parameters
, and by using (18), (19), and (24), respec-

tively. Then the spatially adaptive LMMSE of PDS , ,
can be computed using (15). Let be the
estimation error of , the variance of is

(28)

C. Fusing the Directional Estimates

Using the scheme in Section III-B, we obtain a horizontal
estimate and a vertical estimate of PDS at the positions of
red pixels. Let and be the two estimates, and
and be the corresponding estimation errors, namely

(29)

The variances of estimation errors and are denoted
by and .

Estimate or exploits the CFA spectral-spatial
correlation information only in horizontal or vertical direction.
They should be fused to offer a more accurate estimate of .
Let the fused estimate be the weighted average of and

(30)

where . Denote by the
estimation error of . The optimal weights and
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Fig. 4. One-stage decomposition of the 2-D OWE. H and F are the trans-
poses ofH or F .w ,w andw represent the wavelet coefficient matrices
in horizontal, vertical and, diagonal directions.

should be the pair to minimize the mean square error (MSE) of
, i.e.,

Empirically, we found that the correlation between errors
and is weak in natural images, especially in the

area of rich high-frequency contents that are prone to visible
color artifacts. In cases where and are highly
correlated (implying that two estimates and are close to
each other), the weighted estimate is insensitive to and

anyway. Assuming that and are approximately
uncorrelated, i.e., , we have

To minimize , we let the partial differential of with
respect to be zero

Finally, we have the optimal weights minimizing the MSE of
are

(31)

IV. RECONSTRUCTING THE GREEN CHANNEL

In Bayer CFA pattern the green channel retains much of
image details. The restoration quality of red and blue channels
relies on a good estimate of the green channel. In Section III,
we have obtained an optimal estimate (i.e., or )
of PDS . The effect of DSN is much reduced in and we
could approximately have . Adding back the PDS to
red and blue channels leads to the recovery of full resolution

Fig. 5. Test images. (1) and (2) are full color images and we down sample them
to Bayer CFA images. (3) is a real CFA image captured by a digital camera.

green channel at red pixels or
at blue pixels. However, this PDS-induced green channel is
noisy, because sensor readings ,
and are noise corrupted. In this section, we will
develop an approach to reconstruct the green channel from the
channel-dependent sensor noises , , and .

For the notation convenience, we use 2-D coordinates
to label a CFA position in this section. Considering the PDS es-
timate to be approximately the true PDS , the noisy missing
green samples at the red/blue positions are recovered as

or

(32)

and, consequently

or

(33)

where or is the true green
sample value at a red or blue position. In addition,

at a green pixel position, with being the
sensor reading before any processing.
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TABLE I
RUNNING TIME (SECONDS) FOR A 512� 768 MOSAIC IMAGE BY DIFFERENT DEMOSAICKING AND DENOISING METHODS

In removing the noises , , from to restore the
green image , we have to respect the fact that the noise is non-
stationary. The nonstationarity is due to the mosaic pattern of
CFA and channel-dependent sensor noises. Most existing image
denoising methods assume that the noise is additive and sta-
tionary. In our case, only when the spatially interleaved noises

, , and have the same statistics, the underlying process
can be considered as stationary. With this in mind we develop a
wavelet-based denoising algorithm for denoising .

The wavelet transform (WT) has proved to be very effec-
tive in image denoising [27]–[34]. As a time-frequency anal-
ysis tool, WT preserves local sharp changes and prevents over-
smoothing of pure frequency domain denoising approaches. The
over-complete wavelet expansion (OWE) is particularly suited
to denoising by utilizing redundant information [28]–[31]. One
stage of 2-D OWE decomposition is illustrated in Fig. 4. No
downsampling occurs in OWE but the analytic filters vary with
scales. Filter is interpolated by putting zeros be-
tween each of the coefficients of original filter , so does for

. The filter bandwidth decrease is accomplished by the zero-
padding of filter coefficients instead of the downsampling of
wavelet coefficients. For more detailed information on wavelet
and its application to denoising, refer to [25]–[36].

In the remainder of this section, bold vector symbols denote
wavelet coefficient matrices. Since OWE is a linear transform,
the OWE of noisy green image , where
varies with the spatial position of , is

(34)

where matrix represents the OWE of noisy image at scale
and in horizontal , vertical or diagonal direction,

and matrices and represent the OWEs of noiseless image
and noise respectively.
The LMMSE of can be computed from noisy

wavelet coefficients in to achieve denoising. Let the vari-
ances of and be and . Since in
wavelet domain both and are zero mean
and they are mutually uncorrelated, the LMMSE of is

(35)

Let us discuss the estimation of noise variance first. Re-
ferring to Fig. 4, is obtained through

(36)

where is the input image and 2-D filter is

(37)

Similarly, we have

(38)

where

(39)

(40)

If noises , have the same variance
, the noise wavelet coefficient is stationary and its

standard deviation (in horizontal, vertical, or diagonal direction)
is

where is the norm operator .
However, , and may be different, so is non-
stationary and its variances vary in the positions of red, green
and blue samples in CFA.

Denote by the zero-time response of 2-D filter
. The coefficient is obtained by

(41)

To account for the nonstationarity of noises, we need to ex-
amine in four separate cases corresponding to dif-
ferent sample relations in the Bayer CFA pattern.

Case 1) The position corresponds
to a green sample, i.e., the noise at is . We
denote by the standard deviation of at those
positions. At positions , where

and are integers, the noise is ; at positions
the noise is and at other positions the

noise is . Define a matrix

other positions.
(42)

Then at position , the standard devi-
ation of green noise wavelet coefficients in this

case is .

Case 2) The position also corre-
sponds to a green sample but different from Case 1, now
positions are blue samples of noise

, positions are red samples of
noise and other positions are green samples of noise .
We denote by the standard deviation of at
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Fig. 6. Full color reconstruction for image “fence.” (a) Original image; (b) noisy CFA data (� = 13, � = 12, � = 10); (c)–(f) reconstructed images by
demosaicking methods [6], [7], [12], and [20] followed by denoising method [36]; (g) reconstructed image by method [38]; (h) reconstructed image by the proposed
method.

those positions. Define a matrix

other positions.
(43)

At positions , the standard deviation

of is .

Case 3) corresponds to red sample
positions. We denote by the standard deviation of

at those positions. Similarly, we can compute
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Fig. 7. Full color reconstruction for image “house.” (a) Original image; (b) noisy CFA data (� = 13, � = 12, � = 10); (c)–(f) reconstructed images by
demosaicking methods [6], [7], [12], and [20] followed by denoising method [36]; (g) reconstructed image by method [38]; (h) reconstructed image by the proposed
method.

as , where

other positions.
(44)

Case 4) Finally, corresponds to blue
sample positions. We denote by the standard devia-

tion of at those positions and we have

, where

other positions.
(45)
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TABLE II
PSNR (DECIBEL) RESULTS OF THE RECONSTRUCTED FENCE IMAGES

Regarding to the estimation of , the variance of
, which is required in evaluating (35), we use

an window centered at . The wavelet
coefficients in the window are grouped into four sets
corresponding to the four cases. The th set, denoted by

, contains those coefficients falling into Case 1 can
be locally estimated by

(46)

Finally, if is falling into Case 1, ,
it is estimated by using (35)

where is computed as in (46) and .

V. RECONSTRUCTING THE RED/BLUE CHANNEL

Once an estimate of green channel is obtained, the restoration
of red/blue channel becomes straightforward. The denoising
process of green channel in Section IV yields an approximation
of the noise as a side product. Let be the denoised version
of , the additive noise in the mosaic data can be estimated
as

(47)

TABLE III
PSNR (DECIBEL) RESULTS OF THE RECONSTRUCTED HOUSE IMAGES

Denote by the noisy CFA mosaic image. Since the additive
noise has been estimated in (47), we can compute the de-
noised CFA image as

(48)

Now the problem is transformed to interpolate the red and
blue channels with the denoised CFA image and the demo-
saicked-denoised green image .

Any existing demosaicking method can be employed. How-
ever, to be compatible with the PDS-based technique used in
this paper, we recommend the method in [11] to reproduce the
missing red and blue samples. This method recovers the chromi-
nance channels through a fast bilinear average operation on the
estimated green-red and green-blue PDS signals. It is simple and
efficient once we have a robust estimate of the green channel.

The other way to reconstruct the red/blue channel is that we
first reproduce the missing red and blue samples using the PDS
bilinear interpolation method in [11] and then apply the de-
noising method in Section IV to the three color channels sep-
arately. The color reproduction result by using this scheme is
a little better than the previous one but the price is that we run
three times the denoising process. In the experiments in Sec-
tion VI, we choose the second scheme. The first scheme is a
better choice when the available computation resource is lim-
ited.

VI. EXPERIMENTAL RESULTS

This section presents experimental results and evaluates the
performance of the proposed joint demosaicking-denoising
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Fig. 8. Full color reconstruction for image “flower.” (a)–(d) Reconstructed images by demosaicking methods [6], [7], [12], and [20] followed by denoising method
[36]; (e) reconstructed image by method [38]; (f) reconstructed image by the proposed method.

method. The results of three test images (see Fig. 5) are in-
cluded. The first two images (512 768) are from the Kodak
set of color images, which are widely used in the literature for
evaluating demosaicking algorithms. These full color images
were downsampled into CFA mosaic images according to the
Bayer pattern. To simulate channel-dependent sensor noises,
Gaussian white noises of different variances were added sep-
arately to red, blue and green channels of the mosaic images.

For the simulated noisy CFA data for which the original is
known, we can compute the PSNR measurement of the restored
color images. The third image is a real CFA image, which
is captured by the digital cinema camera developed by the
DALSA Corporation. This 500 750 image was cropped from
a very large frame.

Our comparison study is fairly comprehensive. Five demo-
saicking-denoising schemes are tested for comparison on the
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noisy CFA data: the recently developed joint demosaicking-de-
noising scheme [38]; two well-known gradient based demo-
saicking methods [6], [7] and two recently developed sophisti-
cated demosaicking methods [12], [20] followed by three com-
petitive wavelet-based denoising techniques [29], [34], [36].2

The denoising is performed separately on the red, green and
blue channels of the demosaicked images. These denoising al-
gorithms assume signal-independent stationary noises of known
variances. For a fair evaluation of them on channel-dependent
noises, we let these algorithms use an equivalent channel-in-
dependent Gaussian white noise of standard deviation

(i.e., the average energy of the noises).
Also, we evaluate both stationary and nonstationary noise situ-
ations, namely when , and are equal and when they are
not equal. In the second case, we make the noise level of each
channel proportional to the signal energy of that channel. For
example, for the first and second test images we set ,

, .
To roughly assess the complexity of different demo-

saicking-denoising solutions, in Table I we list the running
times of their Matlab 7.0 implementations to process a
512 768 CFA image. The hardware platform consists of an
Intel Pentium 4, 2.26-GHZ CPU and 1.5-GB RAM. It should be
stressed that the comparison only serves as a reference because
the running time also heavily depends on the optimization of the
program codes. It is observed that the complexity of the joint
demosaicking-denoising method [38] is significantly higher
than the other methods. The complexity of denoising method
[36] is much higher than the other two denoising methods, and
the demosaicking method [12] requires the greatest running
time among all the demosaicking methods.

The reported experimental results can be found at
http://www.comp.polyu.edu.hk/~cslzhang/dmdn.htm. For each
test image, 14 restored versions (12 different combinations of
demosaicking-denoising schemes, the joint demosaicking-de-
noising scheme [38] and the proposed method) are created. To
save space, we only show parts of the reconstructed images
here. Among the three denoising schemes, [36] gives the best
visual quality. Therefore, we couple this denoising method with
the four demosaicking techniques [6], [7], [12], and [20], and
compare the outputs with those of the joint demosaicking-de-
noising scheme [38] and the proposed technique.

Fig. 6(a) is a part of the test image fence and Fig. 6(b) is the
simulated noisy CFA image. The noise levels are ,

, . Fig. 6(c)–(f) are the denoised images (by method
[36]) of the outputs of the demosaicking methods [6], [7], [12],
and [20]. Fig. 6(g) is the result of [38] and Fig. 6(h) is the result
of the proposed joint demosaicking-denoising technique. Simi-
larly, Fig. 7(a)–(h) shows the results of image house produced by
the same set of methods. The demosaicking methods in [6] and
[7] produce many color artifacts that resist subsequent denoising
process, even the sophisticated ones like [36]. The color artifacts
in the high-frequency areas are mainly caused by the IE, while
those in smooth areas are culprit of the DSN. The demosaicking

2The source codes of demosaicking methods [12], [20] and denoising
methods [34], [36] are obtained from the authors. We thank the authors for
sharing their codes.

methods [12] and [20] perform better, but they still suffer from
color artifacts and blurred details after going through a separate
denoising process. This can be seen in the grass portion of the
fence image and the window panel portion of the house image.
The joint demosaicking-denoising method [38] also generates
many color artifacts. The proposed technique is very effective
in removing color artifacts caused by both IE and DSN while
preserving fine image structures, apparently achieving the best
visual quality. In Tables II and III, the PSNR results of the re-
stored images are listed. The proposed method is also competi-
tive in PSNR measure.

The third test image flower consists of real CFA mosaic data.
To perform denoising, we first estimate the noise energy of each
channel from the CFA data. Specifically, we divide the
CFA image into 4 subimages: two green subimages,
one red subimage and one blue subimage. We apply one-stage
OWT to each subimage, and estimate the corresponding noise
energy as [27], where is the
diagonal sub-band. For the green channel, the noise level is the
average of those of the two green subimages. Fig. 8 presents the
results in the same experiment setting as for the other two test
images. Similar conclusions can be drawn from Fig. 8 as from
Figs. 6 and 7. The proposed method appears to be the best in
visual quality.

VII. CONCLUSION

This paper presented a new full color reconstruction method
of noisy CFA data through an LMMSE filtering of the green-red
and green-blue PDS and a wavelet-based denoising process. It
is observed that the PDS is a low-pass process, and it is uncor-
related with the IE, which is a bandpass process, and the DSN,
which is a low pass process but with relatively wide bandwidth.
Based on these properties we estimated the PDS in both hor-
izontal and vertical directions and then optimally fused them.
With the estimated PDS we got a full resolution green image, on
which the additive noise is imposed. Considering that the addi-
tive noise is channel-dependent, we proposed a specific wavelet-
based denoising algorithm to remove the noise from the green
channel. The resulted green channel was used to guide the re-
construction of the red and blue samples. The experiments ver-
ified that the proposed joint demosaicking-denoising color re-
construction scheme significantly suppresses the noise caused
color artifacts while preserving well the image details. It out-
performs the state-of-the-art color demosaicking and denoising
methods.
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