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Abstract—Learning a distance metric from the given training
samples plays a crucial role in many machine learning tasks, and
various models and optimization algorithms have been proposed
in the past decade. In this paper, we generalize several state-of-
the-art metric learning methods, such as large margin nearest
neighbor (LMNN) and information theoretic metric learning
(ITML), into a kernel classification framework. First, doublets
and triplets are constructed from the training samples, and a fam-
ily of degree-2 polynomial kernel functions are proposed for pairs
of doublets or triplets. Then, a kernel classification framework is
established to generalize many popular metric learning methods
such as LMNN and ITML. The proposed framework can also
suggest new metric learning methods, which can be efficiently
implemented, interestingly, by using the standard support vector
machine (SVM) solvers. Two novel metric learning methods,
namely doublet-SVM and triplet-SVM, are then developed un-
der the proposed framework. Experimental results show that
doublet-SVM and triplet-SVM achieve competitive classification
accuracies with state-of-the-art metric learning methods but with
significantly less training time.

Index Terms—Metric learning, support vector machine, near-
est neighbor, kernel method, polynomial kernel.

I. INTRODUCTION

HOW to measure the distance (or similarity/dissimilarity)
between two data points is a fundamental issue in

unsupervised and supervised pattern recognition. The desired
distance metrics can vary a lot in different applications due
to the underlying data structures and distributions, as well
as the specificity of the learning tasks. Learning a distance
metric from the given training examples has been an active
topic in the past decade [1], [2], and it can improve much
the performance of many clustering (e.g., k-means) and clas-
sification (e.g., k-nearest neighbors) methods. Distance metric
learning has been successfully adopted in many real world
applications, e.g., face identification [3], face verification [4],
image retrieval [5], [6], and activity recognition [7].

Generally speaking, the goal of distance metric learning
is to learn a distance metric from a given collection of
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similar/dissimilar samples by punishing the large distances
between similar pairs and the small distances between dissim-
ilar pairs. So far, numerous methods have been proposed to
learn distance metrics, similarity metrics, and even nonlinear
distance metrics. Among them, learning the Mahalanobis
distance metrics for k-nearest neighbor classification has been
receiving considerable research interests [3], [8]–[15]. The
problem of similarity learning has been studied as learning
correlation metrics and cosine similarity metrics [16]–[20].
Several methods have been proposed for nonlinear distance
metric learning [21]–[23]. Extensions of metric learning have
also been investigated for multiple kernel learning [21], semi-
supervised learning [5], [24], [25], multiple instance learning
[26], and multi-task learning [27], [28], etc.

Despite that many metric learning approaches have been
proposed, there are still some issues to be further studied.
First, since metric learning learns a distance metric from the
given training dataset, it is interesting to investigate whether
we can recast metric learning as a standard supervised learning
problem. Second, most existing metric learning methods are
motivated from specific convex programming or probabilistic
models, and it is interesting to investigate whether we can
unify them into a general framework. Third, it is highly
demanded that the unified framework can provide a good
platform for developing new metric learning algorithms, which
can be easily solved by standard and efficient learning tools.

With the above considerations, in this paper we present a k-
ernel classification framework to learn a Mahalanobis distance
metric in the original feature space, which can unify many
state-of-the-art metric learning methods, such as large margin
nearest neighbor (LMNN) [8], [29], [30], information theoretic
metric learning (ITML) [10], and logistic discriminative based
metric learning (LDML) [3]. This framework allows us to
easily develop new metric learning methods by using existing
kernel classifiers such as the support vector machine (SVM)
[31]. Under the proposed framework, we consequently present
two novel metric learning methods, namely doublet-SVM and
triplet-SVM, by modeling metric learning as an SVM problem,
which can be efficiently solved by the existing SVM solvers
like LibSVM [32].

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III presents the proposed
kernel classification framework for metric learning. Section
IV introduces the doublet-SVM and triplet-SVM methods.
Section V presents the experimental results, and Section VI
concludes the paper.

Throughout the paper, we denote matrices, vectors and
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scalars by the upper-case bold-faced letters, lower-case bold-
faced letters, and lower-case letters, respectively.

II. RELATED WORK

As a fundamental problem in supervised and unsupervised
learning, metric learning has been widely studied and various
models have been developed, e.g., LMNN [8], ITML [10]
and LDML [3]. Kumar et al. extended LMNN for transfor-
mation invariant classification [33]. Huang et al. proposed a
generalized sparse metric learning method to learn low rank
distance metrics [11]. Saenko et al. extended ITML for visual
category domain adaptation [34], while Kulis et al. showed
that in visual category recognition tasks, asymmetric transform
would achieve better classification performance [35]. Cinbis
et al. adapted LDML to unsupervised metric learning for
face identification with uncontrolled video data [36]. Several
relaxed pairwise metric learning methods have been developed
for efficient Mahalanobis metric learning [37], [38].

Metric learning via dual approaches and kernel methods has
also been studied. Shen et al. analyzed the Lagrange dual of
the exponential loss in the metric learning problem [12], and
proposed an efficient dual approach for semi-definite metric
learning [15], [39]. Actually, such boosting-like approaches
usually represent the metric matrix M as a linear combination
of rank-one matrices [40]. Liu and Vemuri proposed a doubly
regularized metric learning method by incorporating two regu-
larization terms in the dual problem [41]. Shalev-Shwartz et al.
proposed a pseudo-metric online learning algorithm (POLA)
to learn distance metric in the kernel space [42]. Besides, a
number of pairwise SVM methods have been proposed to learn
distance metrics or nonlinear distance functions [43].

In this paper, we will see that most of the aforementioned
metric learning approaches can be unified into a kernel classifi-
cation framework, while this unified framework can allow us to
develop new metric learning methods which can be efficiently
implemented by off-the-shelf SVM tools.

Wang et al. studied nonlinear metric learning with multiple
kernel learning, and proposed a framework for metric learning
with multiple kernels [21]. In our work, a kernel classification
framework is proposed for metric learning in the original
feature space, while in [21] a nonlinear distance metric is
learned in the kernel induced feature space.

Very recently, Perez-Suay et al. [44] studied the connection
between SVM and metric learning with doublet-based
constraints, and proposed a batch scheme and an online
scheme for metric learning. Compared with [44], our
proposed kernel classification framework considers both
doublet based constraints and triplet based constraints, and
the proposed doublet-SVM model is also different from the
model in [44].

III. A KERNEL CLASSIFICATION BASED METRIC
LEARNING FRAMEWORK

Current metric learning models largely depend on con-
vex or non-convex optimization techniques, some of which
are very inefficient to solve large-scale problems. In this

section, we present a kernel classification framework which
can unify many state-of-the-art metric learning methods. It
also provides a good platform for developing new metric
learning algorithms, which can be easily solved by using the
efficient kernel classification tools. The connections between
the proposed framework and LMNN, ITML, and LDML will
also be discussed in detail.

A. Doublets and Triplets
Unlike conventional supervised learning problems, metric

learning usually considers a set of constraints imposed on the
doublets or triplets of training samples to learn the desired
distance metric. It is very interesting and useful to evaluate
whether metric learning can be casted as a conventional
supervised learning problem. To build a connection between
the two problems, we model metric learning as a supervised
learning problem operating on a set of doublets or triplets, as
described below.

Let D = {(xi, yi) |i = 1, 2, · · · , n} be a training dataset,
where vector xi ∈ Rd represents the ith training sample, and
scalar yi represents the class label of xi. Any two samples
extracted from D can form a doublet (xi,xj), and we assign a
label h to this doublet as follows: h = −1 if yi = yj and h = 1
if yi 6= yj . For each training sample xi, we find from D its
m1 nearest similar neighbors, denoted by {xsi,1, · · · ,xsi,m1

},
and its m2 nearest dissimilar neighbors, denoted by
{xdi,1, · · · ,xdi,m2

}, and then construct (m1 +m2) doublet-
s {(xi,xsi,1), · · · , (xi,xsi,m1

), (xi,x
d
i,1), · · · , (xi,xdi,m2

)}. By
combining all such doublets constructed from all training
samples, we build a doublet set, denoted by {z1, · · · , zNd

},
where zl = (xl,1,xl,2), l = 1, 2, · · · , Nd. The label of doublet
zl is denoted by hl. Note that doublet based constraints are
used in ITML [10] and LDML [3], but the details of the
construction of doublets are not given.

We call (xi,xj ,xk) a triplet if three samples xi, xj and
xk are from D and their class labels satisfy yi = yj 6= yk.
We adopt the following strategy to construct a triplet set. For
each training sample xi, we find its m1 nearest neighbors
{xsi,1, · · · ,xsi,m1

} which have the same class label as xi, and
m2 nearest neighbors {xdi,1, · · · ,xdi,m2

} which have different
class labels from xi. We can thus construct m1m2 triplets
{(xi,xsi,j ,xdi,k)|j = 1, · · · ,m1; k = 1, · · · ,m2} for each
sample xi. By grouping all the triplets, we form a triplet set
{t1, · · · , tNt}, where tl = (xl,1,xl,2,xl,3), l = 1, 2, · · · , Nt.
Note that for the convenience of expression, here we remove
the super-script “s” and “d” from xl,2 and xl,3, respectively.
A similar way to construct the triplets was used in LMNN [8]
based on the k-nearest neighbors of each sample.

B. A Family of Degree-2 Polynomial Kernels
We then introduce a family of degree-2 polynomial kernel

functions which can operate on pairs of the doublets or triplets
defined above. With the introduced degree-2 polynomial ker-
nels, distance metric learning can be readily formulated as a
kernel classification problem.

Given two samples xi and xj , we define the following
function:

K(xi,xj) = tr(xix
T
i xjx

T
j ), (1)
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where tr (•) represents the trace operator of a matrix. One can
easily see that K(xi,xj) = (xTi xj)

2 is a degree-2 polynomial
kernel, and K(xi,xj) satisfies the Mercer’s condition [45].

The kernel function defined in (1) can be extended to a pair
of doublets or triplets. Given two doublets zi = (xi,1,xi,2)
and zj = (xj,1,xj,2), we define the corresponding degree-2
polynomial kernel as

KD(zi, zj) = tr
(
(xi,1 − xi,2)(xi,1 − xi,2)

T

(xj,1 − xj,2)(xj,1 − xj,2)
T
)

=
[
(xi,1 − xi,2)

T
(xj,1 − xj,2)

]2
. (2)

The kernel function in (2) defines an inner product of two
doublets. With this kernel function, we can learn a decision
function to tell whether the two samples of a doublet have the
same class label. In Section III-C we will show the connection
between metric learning and kernel decision function learning.

Given two triplets ti = (xi,1,xi,2,xi,3) and tj =
(xj,1,xj,2,xj,3), we define the corresponding degree-2 poly-
nomial kernel as

KT (ti, tj) = tr
(
TiTj

)
, (3)

where
Ti = (xi,1 − xi,3) (xi,1 − xi,3)

T

− (xi,1 − xi,2) (xi,1 − xi,2)
T
,

Tj = (xj,1 − xj,3) (xj,1 − xj,3)
T

− (xj,1 − xj,2) (xj,1 − xj,2)
T
.

The kernel function in (3) defines an inner product of two
triplets. With this kernel, we can learn a decision function
based on the inequality constraints imposed on the triplets. In
Section III-C we will also show how to deduce the Maha-
lanobis metric from the decision function.

C. Metric Learning via Kernel Methods

With the degree-2 polynomial kernels defined in Section
III-B, the task of metric learning can be easily solved by
kernel methods. More specifically, we can use any kernel
classification method to learn a kernel classifier with one of
the following two forms

gd (z) = sgn
(∑

l
hlαlKD (zl, z) + b

)
, (4)

gt (t) = sgn
(∑

l
αlKT (tl, t)

)
, (5)

where zl, l = 1, 2, · · · , N , is the doublet constructed from the
training dataset, hl is the label of zl, tl is the triplet constructed
from the training dataset, z =

(
x(i),x(j)

)
is the test doublet,

t is the test triplet, αl is the weight, and b is the bias.
For doublet, we have∑

l
hlαl tr

(
(xl,1 − xl,2)(xl,1 − xl,2)

T

(x(i) − x(j))(x(i) − x(j))
T
)
+ b

=(x(i) − x(j))
T
M(x(i) − x(j)) + b, (6)

where

M =
∑

l
hlαl(xl,1 − xl,2)(xl,1 − xl,2)

T (7)

is the matrix M of the Mahalanobis distance metric. Thus,
the kernel decision function gd (z) can be used to determine
whether x(i) and x(j) are similar or dissimilar to each other.

For triplet, the matrix M can be derived as follows.
Theorem 1: Denote by t =

(
x(i),x(j),x(k)

)
the test

triplet and by tl = (xl,1,xl,2,xl,3) the lth triplet in
the training set. Let Tl = (xl,1 − xl,3) (xl,1 − xl,3)

T −
(xl,1 − xl,2) (xl,1 − xl,2)

T , and T =
(
x(i) − x(k)

) (
x(i) − x(k)

)T
−
(
x(i) − x(j)

) (
x(i) − x(j)

)T
. For the decision function

defined in (5), if we re-parameterize the Mahalanobis distance
metric matrix M as

M =
∑

l
αlTl

=
∑

l
αl

[
(xl,1 − xl,3) (xl,1 − xl,3)

T

− (xl,1 − xl,2) (xl,1 − xl,2)
T
]
, (8)

then there is∑
l
αlKT (tl, t) =

(
x(i) − x(k)

)T
M
(
x(i) − x(k)

)
−
(
x(i) − x(j)

)T
M
(
x(i) − x(j)

)
.

Proof: Based on the definition of KT (tl, t) in (3), we
have ∑

l
αlKT (tl, t) =

∑
l
αl tr (TlT)

=
∑

l
αl tr

(
Tl

((
x(i) − x(k)

) (
x(i) − x(k)

)T
−
(
x(i) − x(j)

) (
x(i) − x(j)

)T)T)
=
∑

l
αl tr

(
Tl

(
x(i) − x(k)

) (
x(i) − x(k)

)T)
−
∑

l
αl tr

(
Tl

(
x(i) − x(j)

) (
x(i) − x(j)

)T)
=
(
x(i) − x(k)

)T (∑
l
αlTl

) (
x(i) − x(k)

)
−
(
x(i) − x(j)

)T (∑
l
αlTl

) (
x(i) − x(j)

)
=
(
x(i) − x(k)

)T
M
(
x(i) − x(k)

)
−
(
x(i) − x(j)

)T
M
(
x(i) − x(j)

)
. (9)

End of proof.
Clearly, equations (4)∼(9) provide us a new perspective to

view and understand the distance metric matrix M under a
kernel classification framework. Meanwhile, this perspective
provides us new approaches for learning distance metric,
which can be much easier and more efficient than the previous
metric learning approaches. In the following, we introduce
two kernel classification methods for metric learning:
regularized kernel SVM and kernel logistic regression. Note
that by modifying the construction of doublet or triplet set,
using different kernel classifier models, or adopting different
optimization algorithms, other new metric learning algorithms
can also be developed under the proposed framework.
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1) Kernel SVM-like Model: Given the doublet or triplet
training set, an SVM-like model can be proposed to learn the
distance metric:

min
M,b,ξ

r (M) + ρ (ξ) (10)

s.t. f
(d)
l

(
(xl,1 − xl,2)

T
M(xl,1 − xl,2), b, ξl

)
≥ 0

(doublet set), (11)

or f (t)l
(
(xl,1 − xl,3)

T
M(xl,1 − xl,3)

−(xl,1 − xl,2)
T
M(xl,1 − xl,2), ξl

)
≥ 0 (triplet set), (12)

ξl ≥ 0, (13)

where r (M) is the regularization term, ρ (ξ) is the margin
loss term, the constraint f (d)l can be any linear function of
(xl,1 − xl,2)

T
M(xl,1−xl,2), b, and ξl, and the constraint f (t)l

can be any linear function of (xl,1 − xl,3)
T
M(xl,1 − xl,3)−

(xl,1 − xl,2)
T
M(xl,1−xl,2) and ξl. To guarantee that (10) is

convex, we can simply choose convex regularizer r (M) and
convex margin loss ρ (ξ). By plugging (7) or (8) in the model
in (10), we can employ the SVM and kernel methods to learn
all αl to obtain the matrix M.

If we adopt the Frobenius norm to regularize M and the
hinge loss penalty on ξl, the model in (10) would become the
standard SVM. SVM and its variants have been extensively
studied [31], [46], [47] and various algorithms have been
proposed for large-scale SVM training [48], [49]. Thus, the
SVM-like model in (10) can allow us to learn good metrics
efficiently from large-scale training data.

2) Kernel logistic regression: Under the kernel logistic
regression model (KLR) [50], we let hl = 1 if the samples
of doublet zl belong to the same class and let hl = 0 if the
samples of it belong to different classes. Meanwhile, suppose
that the label of a doublet zl is unknown, and we can calculate
the probability that zl’s label is 1 as follows:

P (pl = 1|zl) =
1

1 + exp (
∑
i αiKD (zi, zl) + b)

. (14)

The coefficient vector α and the bias b can be obtained by
maximizing the following log-likelihood function:

(α, b) = argmax
α,b

{
l(α, b) =

∑
l
hl lnP (pl = 1|zl)

+(1− hl) lnP (pl = 0|zl)
}
. (15)

KLR is a powerful probabilistic approach for classification.
By modeling metric learning as a KLR problem, we can easily
use the existing KLR algorithms to learn the desired metric.
Moreover, the variants and improvements of KLR, e.g., sparse
KLR [51], can also be used to develop new metric learning
methods.

D. Connections with LMNN, ITML, and LDML
The proposed kernel classification framework provides a

unified explanation of many state-of-the-art metric learning
methods. In this subsection, we show that LMNN and ITML
can be considered as certain SVM models, while LDML is an
example of the kernel logistic regression model.

1) LMNN: LMNN [8] learns a distance metric that penal-
izes both large distances between samples with the same label
and small distances between samples with different labels.
LMNN is operated on a set of triplets {(xi,xj ,xk)}, where
xi has the same label as xj but has different label from xk.
The optimization problem of LMNN can be stated as follows:

min
M,ξijk

∑
i,j

(xi − xj)
T
M (xi − xj) + C

∑
i,j,k

ξijk (16)

s.t. (xi − xk)
T
M (xi − xk)

− (xi − xj)
T
M (xi − xj) ≥ 1− ξijk, (17)

ξijl ≥ 0, (18)
M < 0. (19)

Since M is required to be positive semi-definite in LMNN,
we introduce the following indicator function:

ι< (M) =

{
0, if M < 0,

+∞, otherwise,
(20)

and choose the following regularizer and margin loss:

rLMNN (M) =
∑

i,j
(xi − xj)

T
M (xi − xj) + ι< (M) ,

(21)
ρLMNN (ξ) = C

∑
i,j,k

ξijk. (22)

Then we can define the following SVM-like model on the
same triplet set:

min
M,ξ

rLMNN (M) + ρLMNN (ξ) (23)

s.t. (xi − xk)
T
M (xi − xk)

− (xi − xj)
T
M (xi − xj) ≥ 1− ξijk, (24)

ξijk ≥ 0. (25)

It is obvious that the SVM-like model in (23) is equivalent
to the LMNN model in (16).

2) ITML: ITML [10] is operated on a set of doublets
{(xi,xj)} by solving the following minimization problem

min
M,ξ

Dld (M,M0) + γ ·Dld (diag (ξ) ,diag (ξ0)) (26)

s.t. (xi − xj)
T
M(xi − xj) ≤ ξu(i,j) (i, j) ∈ S, (27)

(xi − xj)
T
M(xi − xj) ≥ ξl(i,j) (i, j) ∈ D, (28)

M < 0, (29)

where M0 is the given prior of the metric matrix, ξ0 is the
given prior on ξ, S is the set of doublets where xi and xj
have the same label, D is the set of doublets where xi and xj
have different labels, and Dld (·, ·) is the LogDet divergence
of two matrices defined as:

Dld (M,M0) = tr
(
MM−1

0

)
− log det

(
MM−1

0

)
− n.

(30)
Davis et al. also proposed an iterative Bregman projection

algorithm for ITML to avoid the positive semi-definite projec-
tion of the distance metric matrix M [10].

By introducing the following regularizer and margin loss:

rITML (M) = Dld (M,M0) + ι< (M) , (31)
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ρITML (ξ) = γ ·Dld (diag (ξ) ,diag (ξ0)) , (32)

we can then define the following SVM-like model on the same
doublet set:

min
M,ξ

rITML (M) + ρITML (ξ) (33)

s.t. (xi − xj)
T
M(xi − xj) ≤ ξu(i,j) (i, j) ∈ S, (34)

(xi − xj)
T
M(xi − xj) ≥ ξl(i,j) (i, j) ∈ D, (35)

ξij ≥ 0, (36)

where zij = (xi,xj). One can easily see that the SVM-like
model in (33) is equivalent to the ITML model in (26).

3) LDML: LDML [3] is a logistic discriminant based
metric learning approach based on a set of doublets. Given
a doublet zl =

(
xl(i),xl(j)

)
and its label hl, LDML defines

the probability that yl(i) = yl(j) as follows:

pl = P (yl(i) = yl(j)|xl(i),xl(j),M, b)

= σ(b− dM(xl(i),xl(j))), (37)

where σ(z) is the sigmoid function, b is the bias, and
dM(xl(i),xl(j)) = (xl(i) − xl(j))

T
M(xl(i) − xl(j)). With the

pl defined in (37), LDML learns M and b by maximizing the
following log-likelihood:

max
M,b

{
l(M, b) =

∑
l
hl ln pl + (1− hl) ln(1− pl)

}
. (38)

Note that M is not constrained to be positive semi-definite in
LDML.

With the same doublet set, let α be the solution obtained
by the kernel logistic model in (15), and M be the solution
of LDML in (38). It is easy to see that:

M =
∑

l
αl(xl(i) − xl(j))(xl(i) − xl(j))

T
. (39)

Thus, LDML is equivalent to kernel logistic regression under
the proposed kernel classification framework.

IV. METRIC LEARNING VIA SVM

The kernel classification framework proposed in Section III
can not only generalize the existing metric learning models
(as shown in Section III-D), but also be able to suggest
new metric learning models. Actually, for both ITML and
LMNN, the positive semi-definite constraint is imposed on M
to guarantee that the learned distance metric is a Mahalanobis
metric, which makes the models unable to be solved using
the efficient kernel learning toolbox. In this section, a two-
step greedy strategy is adopted for metric learning. We first
neglect the positive semi-definite constraint and use the SVM
toolbox to learn a preliminary matrix M, and then map M
onto the space of positive semi-definite matrices. The projected
sub-gradient algorithm used in many metric learning methods
[30] share similar spirits with the two-step greedy strategy.
As examples, we present two novel metric learning methods,
namely doublet-SVM and triplet-SVM, based on the proposed
framework. Like in conventional SVM, we adopt the Frobenius
norm to regularize M and employ the hinge loss penalty, and
hence the doublet-SVM and triplet-SVM can be efficiently
solved by using the standard SVM toolbox.

A. Doublet-SVM

In doublet-SVM, we set the Frobenius norm regularizer as
rSVM (M) = 1

2 ‖M‖
2
F , and set ρSVM (ξ) = C

∑
l ξl as the

margin loss term, resulting in the following model:

min
M,b,ξ

1

2
‖M‖2F + C

∑
l
ξl (40)

s.t. hl

(
(xl,1 − xl,2)

T
M(xl,1 − xl,2) + b

)
≥ 1− ξl, (41)

ξl ≥ 0, ∀l, (42)

where ‖·‖F denotes the Frobenius norm. The Lagrange dual
problem of the above doublet-SVM model is:

max
α
− 1

2

∑
i,j
αiαjhihjKD (zi, zj) +

∑
i
αi (43)

s.t. 0 ≤ αl ≤ C, ∀l, (44)∑
l
αlhl = 0, (45)

which can be easily solved by many existing SVM solvers
such as LibSVM [32]. The detailed deduction of the dual of
doublet-SVM can be found in Appendix A.

B. Triplet-SVM

In triplet-SVM, we also choose rSVM (M) = 1
2 ‖M‖

2
F as

the regularization term, and choose ρSVM (ξ) = C
∑
l ξl as

the margin loss term. Since the triplets do not have label
information, we choose the linear inequality constraints which
are adopted in LMNN, resulting in the following triplet-SVM
model:

min
M,ξ

1

2
‖M‖2F + C

∑
l
ξl (46)

s.t. (xl,1 − xl,3)
T
M(xl,1 − xl,3)

− (xl,1 − xl,2)
T
M(xl,1 − xl,2) ≥ 1− ξl, (47)

ξl ≥ 0, ∀l. (48)

Actually, the proposed triplet-SVM can be regarded as a
one-class SVM model, and the formulation of triplet-SVM is
similar to the one-class SVM in [47]. The dual problem of
triplet-SVM is:

max
α
− 1

2

∑
i,j
αiαjKT (ti, tj) +

∑
i
αi (49)

s.t. 0 ≤ αl ≤ C, ∀l, (50)

which can also be efficiently solved by existing SVM solvers
[32]. The detailed deduction of the dual of triplet-SVM can
be found in Appendix B.

C. Discussions

The matrix M learned by doublet-SVM and triplet-SVM
may not be positive semi-definite. To learn a Mahalanobis
distance metric, which requires M to be positive semi-definite,
we can compute the singular value decomposition of M =
UΛV, where Λ is the diagonal matrix of eigenvalues, and
then preserve only the positive eigenvalues in Λ to form
another diagonal matrix Λ+. Finally, we let M+ = UΛ+V
be the Mahalanobis metric matrix.
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The proposed doublet-SVM and triplet-SVM are easy to
implement since the use of Frobenius norm regularizer and
hinge loss penalty allows us to readily employ the available
SVM toolbox to solve them. A number of efficient algorithms,
e.g., sequential minimal optimization [52], have been proposed
for SVM training, making doublet-SVM and triplet-SVM very
efficient to optimize. Moreover, using the large-scale SVM
training algorithms [48], [49], [53], [54], we can easily extend
doublet-SVM and triplet-SVM to deal with large-scale metric
learning problems.

A number of kernel methods have been proposed for
supervised learning [45]. With the proposed framework, we
can easily couple them with the degree-2 polynomial kernel
to develop new metric learning approaches. Semi-supervised,
multiple instance, and multi-task metric learning have been
investigated in [5], [26], [27], [55]. Fortunately, the pro-
posed kernel classification framework can also allow us to
develop such kind of metric learning approaches based on
the recent progress of kernel methods for semi-supervised,
multiple instance, and multitask learning [56]–[59]. Taking
semi-supervised metric learning as an example, based on
Laplacian SVM [56] and doublet-SVM, we can readily extend
the kernel classification framework for semi-supervised metric
learning.

Let {(zi, hi)}Li=1 be a set of L labeled doublets, and
{zi}i=L+Ui=L+1 be a set of U unlabeled doublets. With the degree-
2 polynomial kernel KD (zi, zj), the decision function can be
expressed as:

f (z) =
∑L

i=1
αihiKD (z, zi) +

∑L+U

i=L+1
αiKD (z, zi),

where z =
(
x(j),x(k)

)
, zi = (xi,1,xi,2). Analogous to Lapla-

cian SVM, one can combine the Frobenius norm regularizer
and the manifold regularizer:

r (f) = γA ‖f‖2K +
γI

(U + L)
2 fT (D−W) f ,

where ‖f‖K denotes the norm in the kernel feature space,
fi =

∑L+U
j=1 αjKD (zi, zj), f = (f1, · · · , fL+U )T , W is in-

troduced to model the adjacency between doublets with Wij =
exp ((−KD (zi, zi) + 2KD (zi, zj)−KD (zj , zj))/4t ) (t is
the constant parameter), where D is a diagonal matrix with
Dii =

∑L+U
j=1 Wij . By using hinge loss as the margin loss term

ρ (ξ) and introducing the Laplacian matrix L = D−W, semi-
supervised metric learning can then be formulated as Laplacian
SVM:

min
f

γA ‖f‖2K +
γI

(u+ l)
2 fTLf + C

∑
i
ξi

s.t. hi (f(zi) + b) ≥ 1− ξi,
ξi ≥ 0, i = 1, · · · , L.

The Lagrange dual problem of Laplacian SVM can be repre-
sented as

min
α

∑L

i=1
αi −

1

2
αTQα

s.t. 0 ≤ αi ≤ C, i = 1, · · · , L,∑L

i=1
αihi = 0,

where Q = YJK
(
2γAI + 2 γI

(L+U)2
LK

)−1

JTY, K is the
kernel Gram matrix with Kij = KD (zi, zj), Y is an
(L+ U)×(L+ U) diagonal matrix with Yii = hi when i ≤ L
and 0 otherwise, J is an (L+ U)× (L+ U) diagonal matrix
with Jii = 1 when i ≤ L and 0 otherwise.

The above Laplacian SVM problem can be solved by the
standard SVM solver [56]. Given the optimal solution on α,
the positive semi-definite matrix M can be obtained by

M =
∑L

i=1
αihi (xi,1 − xi,2) (xi,1 − xi,2)

T

+
∑L+U

i=L+1
αi (xi,1 − xi,2) (xi,1 − xi,2)

T
.

Similarly, one can extend the kernel classification frame-
work for multiple instance and multi-task metric learning
based on the multiple instance and multi-task kernel learning
methods [57]–[59].

V. EXPERIMENTAL RESULTS

In the experiments, we evaluate the proposed doublet-SVM
and triplet-SVM for k-NN classification with k = 1 by
using the UCI datasets and the handwritten digit datasets. We
compare the proposed methods with five representative and
state-of-the-art metric learning models, i.e., LMNN [8], ITML
[10], LDML [3], neighbourhood component analysis (NCA)
[9] and maximally collapsing metric learning (MCML) [2], in
terms of classification error rate and training time (in seconds).
We implemented doublet-SVM and triplet-SVM based on
the popular SVM toolbox LibSVM1 . The source codes of
LMNN2, ITML3, LDML4, NCA5 and MCML6 are online
available, and we tuned their parameters to get the best results.
The Matlab source code of our algorithm can be downloaded at
http://www4.comp.polyu.edu.hk/∼cslzhang/PSML.v1.zip. In
the training stage, the doublet set used in doublet-SVM is
exactly the same as that used in ITML, but is different from
that used in the other models, i.e., NCA, MCML, and LDML.
The triplet set used in Triplet-SVM is different from that used
in LMNN. The reason that we do not use the same doublet
or triplet sets as LMNN, NCA, MCML, and LDML is that
the released codes of these approaches either include inherent
default doublet or triplet sets, or dynamically tune the doublet
or triplet sets during the training stage.

A. UCI Dataset Classification

Ten datasets selected from the UCI machine learning repos-
itory [60] are used in the experiment. For the Statlog Satellite,
SPECTF Heart and Letter datasets, we use the defined training
and test sets to perform the experiment. For the other 7
datasets, we use 10-fold cross validation to evaluate the
competing metric learning methods, and the reported error
rate and training time are obtained by averaging over the 10

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://www.cse.wustl.edu/∼kilian/code/code.html
3http://www.cs.utexas.edu/∼pjain/itml/
4http://lear.inrialpes.fr/people/guillaumin/code.php
5http://www.cs.berkeley.edu/∼fowlkes/software/nca/
6http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality

Reduction.html
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TABLE I
THE UCI DATASETS USED IN THE EXPERIMENT

Dataset # of training samples # of test samples Feature dimension # of classes

Parkinsons 176 19 22 2
Sonar 188 20 60 2

Statlog Segmentation 2,079 231 19 7
Breast Tissue 96 10 9 6

ILPD 525 58 10 2
Statlog Satellite 4,435 2,000 36 6

Blood Transfusion 674 74 4 2
SPECTF Heart 80 187 44 2

Cardiotocography 1,914 212 21 10
Letter 16,000 4,000 16 26

runs. Table I summarizes the basic information of the 10 UCI
datasets.

Both doublet-SVM and triplet-SVM involve three hyper-
parameters, i.e., m1, m2, and C. Using the Statlog Segmen-
tation dataset as an example, we analyze the sensitivity of
classification error rate to those hyper-parameters. By setting
m1 = 1 and C = 1, we investigate the influence of m2 on
classification performance. Fig. 1 shows the curves of classifi-
cation error rate versus m2 for doublet-SVM and triplet-SVM.
One can see that both doublet-SVM and triplet-SVM achieve
their lowest error rates when m2 = 2. Moreover, the error
rates tend to be a little higher when m2 > 3. Thus, we set m2

to 1 ∼ 3 in our experiments.
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Fig. 1. Classification error rate (%) versus m2 for (a) doublet-SVM and (b)
triplet-SVM with m1 = 1 and C = 1.

By setting m1 = m2, we study the influence of m1 on clas-
sification error rate. The curves of error rate versus m1 (= m2)
for doublet-SVM and triplet-SVM are shown in Fig. 2. One
can see that, the lowest classification error is obtained when
m1 = m2 = 2. Thus, we also set m1 to 1 ∼ 3 in our
experiments.

We further investigate the influence of C on the classifi-
cation error rate by fixing m1 = m2 = 2. Fig. 3 shows the
curves of classification error rate versus C for doublet-SVM
and triplet-SVM. One can see that the error rate is insensitive
to C in a wide range, but it jumps when C is no less than
104 for doublet-SVM and no less than 101 for triplet-SVM.
Thus, we set C < 104 for doublet-SVM and C < 101 for
triplet-SVM in our experiments.

Table II lists the classification error rates of the seven
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Fig. 2. Classification error rate (%) versus m1(= m2) for (a) doublet-SVM
and (b) triplet-SVM with C = 1.
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Fig. 3. Classification error rate (%) versus C for (a) doublet-SVM and (b)
triplet-SVM with m1 = m2 = 2.

metric learning models on the 10 UCI datasets. On the
Letter, ILPD and SPECTF Heart datasets, doublet-SVM
obtains the lowest error rates. On the Statlog Segmentation
dataset, triplet-SVM achieves the lowest error rate. In order to
compare the recognition performance of these metric learning
models, we list the average ranks of these models in the
last row of Table II. On each dataset, we rank the methods
based on their error rates, i.e., we assign rank 1 to the best
method and rank 2 to the second best method, and so on.
The average rank is defined as the mean rank of one method
over the 10 datasets, which can provide a fair comparison of
the algorithms [61].

From Table II, we can see that doublet-SVM achieves the
best average rank and triplet-SVM achieves the fourth best
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TABLE II
THE CLASSIFICATION ERROR RATES (%) AND AVERAGE RANKS OF THE COMPETING METHODS ON THE UCI DATASETS

Method Doublet-SVM Triplet-SVM NCA LMNN ITML MCML LDML

Parkinsons 5.68 7.89 4.21 5.26 6.32 12.94 7.15
Sonar 13.07 14.29 14.43 11.57 14.86 24.29 22.86

Statlog Segmentation 2.42 2.29 2.68 2.64 2.29 2.77 2.86
Breast Tissue 38.37 33.37 30.75 34.37 36.75 30.75 48.00

ILPD 32.09 35.16 34.79 34.12 33.59 34.79 35.84
Statlog Satellite 10.80 10.75 10.95 10.05 11.30 15.65 15.90

Blood Transfusion 29.47 34.37 28.38 28.78 31.51 31.89 31.40
SPECTF Heart 27.27 33.69 38.50 34.76 35.29 29.95 33.16

Cardiotocography 20.71 19.34 21.84 19.21 19.90 20.76 22.26
Letter 2.47 2.77 2.47 3.45 2.78 4.20 11.05

Average Rank 2.70 3.70 3.40 2.80 4.00 5.00 6.00

average rank. The results validate that, by incorporating the
degree-2 polynomial kernel into the standard (one-class) kernel
SVM classifier, the proposed kernel classification based metric
learning framework can lead to very competitive classification
accuracy with state-of-the-art metric learning methods. It is
interesting to see that, although doublet-SVM outperforms
triplet-SVM on most datasets, triplet-SVM works better than
doublet-SVM on large scale datasets like Statlog Segmenta-
tion, Statlog Satellite and Cardiotocography, and achieves very
close error rate to doublet-SVM on the large dataset Letter.
These results may indicate that doublet-SVM is more effective
for small scale datasets, while triplet-SVM is more effective
for large scale datasets, where each class has many training
samples. Our experimental results on the three large scale
handwritten digit datasets in Section V-B will further verify
this.

Let’s then compare the training time of the proposed
methods and the competing methods. All the experiments are
executed in a PC with 4 Intel Core i5-2410 CPUs (2.30 GHz)
and 16 GB RAM. Note that in the training stage, doublet-
SVM, ITML, LDML, MCML, and NCA are operated on
the doublet set, while triplet-SVM and LMNN are operated
on the triplet set. Thus, we compare the five doublet-based
metric learning methods and the two triplet-based methods,
respectively. Fig. 4 compares the training time of doublet-
SVM, ITML, LDML, MCML, and NCA. Clearly, doublet-
SVM is always the fastest algorithm and it is much faster
than the other four methods. In average, it is 2,000 times faster
than the second fastest algorithm, ITML. Fig. 5 compares the
training time of triplet-SVM and LMNN. One can see that
triplet-SVM is about 100 times faster than LMNN on the ten
data sets.

B. Handwritten Digit Recognition

Apart from the UCI datasets, we also perform experiments
on three widely used large scale handwritten digit sets, i.e.,
MNIST, USPS, and Semeion, to evaluate the performance of
doublet-SVM and triplet-SVM. On the MNIST and USPS
datasets, we use the defined training and test sets to train
the models and calculate the classification error rates. On the

Fig. 4. Training time (sec.) of doublet-SVM, NCA, ITML, MCML and
LDML. From 1 to 10, the Dataset ID represents Parkinsons, Sonar, Statlog
Segmentation, Breast Tissue, ILPD, Statlog satellite, Blood Transfusion,
SPECTF Heart, Cardiotocography, and Letter.
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Fig. 5. Training time (sec.) of triplet-SVM and LMNN. From 1 to 10, the
Dataset ID represents Parkinsons, Sonar, Statlog Segmentation, Breast Tissue,
ILPD, Statlog satellite, Blood Transfusion, SPECTF Heart, Cardiotocography,
and Letter.

Semeion datasets, we use 10-fold cross validation to evaluate
the metric learning methods, and the error rate and training
time are obtained by averaging over the 10 runs. Table III
summarizes the basic information of the three handwritten
digit datasets.

As the dimensions of digit images are relatively high, PCA
is utilized to reduce the feature dimension. The metric learning
models are trained in the PCA subspace. Table IV lists the
classification error rates on the handwritten digit datasets. On
the MNIST dataset, LMNN achieves the lowest error rate; on
the USPS dataset, doublet-SVM achieves the lowest error rate;
and on the Semeion dataset, triplet-SVM obtains the lowest
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TABLE III
THE HANDWRITTEN DIGITS DATASETS USED IN THE EXPERIMENTS

Dataset # of training samples # of test samples Feature dimension PCA dimension # of classes

MNIST 60,000 10,000 784 100 10
USPS 7,291 2,007 256 100 10

Semeion 1,434 159 256 100 10

TABLE IV
THE CLASSIFICATION ERROR RATES (%) AND AVERAGE RANKS OF THE COMPETING METHODS ON THE HANDWRITTEN DIGIT DATASETS

Dataset Doublet-SVM Triplet-SVM NCA LMNN ITML MCML LDML

MNIST 3.19 2.92 5.46 2.28 2.89 - 6.05
USPS 5.03 5.23 5.68 5.38 6.63 5.08 8.77

Semeion 5.09 4.71 8.60 6.09 5.71 11.23 11.98

Average Rank 2.33 2.00 4.67 2.67 3.33 - 6.00

Fig. 6. Training time (sec.) of doublet-SVM, NCA, ITML, MCML and
LDML. From 1 to 3, the Dataset ID represents USPS, MNIST and Semeion.

error rate. We do not report the error rate of MCML on the
MNIST dataset because MCML requires too large memory
space (more than 30 GB) on this dataset and cannot be run in
our PC.

The last row of Table IV lists the average ranks of the
seven metric learning models. We can see that triplet-SVM
can achieve the best average rank, and doublet-SVM achieves
the second best average rank. The results further validate that
on large scale datasets where each class has sufficient number
of training samples, triplet-SVM would be superior to doublet-
SVM and the competing methods.

We then compare the training time of these metric learning
methods. All the experiments are executed in the same PC
as the experiments in Section V-A. We compare the five
doublet-based metric learning methods and the two triplet-
based methods, respectively. Fig. 6 shows the training time of
doublet-SVM, ITML, LDML, MCML, and NCA. We can see
that doublet-SVM is much faster than the other four methods.
In average it is 2,000 times faster than the second fastest
algorithm, ITML. Fig. 7 shows the training time of triplet-
SVM and LMNN. One can see that triplet-SVM is about 100
times faster than LMNN on the three datasets.

C. Doublets/Triplets Construction

Let’s first compare the classification performance by using
different strategies to construct the doublet set. Using Doublet-
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Fig. 7. Training time (sec.) of triplet-SVM and LMNN. From 1 to 3, the
Dataset ID represents USPS, MNIST and Semeion.

SVM as an example, we consider the following two strategies
to construct the doublet set:

(i) Nearest neighbor (NN) selection: As de-
scribed in Section III.A, for each training
sample xi, we construct m1 + m2 doublets
{(xi,xsi,1), · · · , (xi,xsi,m1

), (xi,x
d
i,1), · · · , (xi,xdi,m2

)},
where xsi,k denotes the kth similar nearest neighbor of
xi, and xdi,k denotes the kth dissimilar nearest neighbor
of xi. By constructing all such doublets from the
training samples, we build a doublet set using the NN
strategy.

(ii) Random selection: Given a training set of n samples,
we randomly select (m1 +m2)n doublets from all the
n(n− 1) possible doublets.

Tables V and VI list the classification error rates of doublet-
SVM by using the NN and the random selection strategies to
construct the doublet set. The NN selection outperforms the
random selection on 7 out of the 10 UCI datasets and on all
the three handwritten digit datasets. One can conclude that
for doublet-SVM, the NN selection is better than the random
selection to construct doublet set.

We then compare the classification performance by using
different strategies to construct the triplet set. Using Triplet-
SVM as an example, we also consider the NN selection and
random selection strategies to construct triplet set:

(i) Nearest neighbor (NN) selection: For each training sam-



10

ple xi, we construct m1m2 triplets {(xi,xsi,j ,xdi,k)|j =
1, . . . ,m1, k = 1, . . . ,m2}, where xsi,j denotes the jth

similar nearest neighbor of xi, and xdi,k denotes the kth

dissimilar nearest neighbor of xi. By constructing all
such triplets from the training samples, we build a triplet
set using the NN strategy.

(ii) Random selection: Given a training set of n samples, we
randomly select (m1m2)n triplets from all the n(n −
1)(n− 2) possible triplets.

Tables V and VI list the classification error rates of triplet-
SVM by using the NN and the random selection strategies.
The NN selection outperforms the random selection on 9 out
of the 10 UCI datasets and 2 out of the 3 handwritten digit
datasets. One can conclude that the NN selection strategy is
also a better choice than the random selection strategy for
triplet-SVM to construct triplet sets.

D. Statistical Tests

Based on the classification error rates listed in Tables II
and IV and following the statistical test setting in [61], we
perform the Bonferroni-Dunn test [62] at the significance level
p = 0.05. The results are shown in Fig. 8. The Bonferroni-
Dunn test results indicate that the classification performance of
Doublet-SVM and Triplet-SVM is statistically better than that
of LDML at p = 0.05, but there is no statistically significant
difference between the classification performance of Doublet-
SVM, Triplet-SVM and the other 4 methods.

LDML
MCML

Doublet-SVM
LMNN
Triplet-SVM

NCA
ITML

234567
CD = 2.235

Fig. 8. Performance comparison of the seven metric learning methods
using the Bonferroni-Dunn test. Groups of methods that are not significantly
different (at p = 0.05) are connected. CD refers to the critical difference
between the average ranks of two methods.

VI. CONCLUSION

In this paper, we proposed a general kernel classification
framework for distance metric learning. By coupling a degree-
2 polynomial kernel with some kernel methods, the proposed
framework can unify many representative and state-of-the-art
metric learning approaches such as LMNN, ITML and LDM-
L. The proposed framework also provides a good platform
for developing new metric learning algorithms. Two metric
learning methods, i.e., doublet-SVM and triplet-SVM, were
developed and they can be efficiently implemented by the
standard SVM solvers. Our experimental results on the UCI
datasets and handwritten digit datasets showed that doublet-
SVM and triplet-SVM are much faster than state-of-the-art
methods in terms of training time, while they achieve very
competitive results in terms of classification error rate.

The proposed kernel classification framework provides a
new perspective on developing metric learning methods via

kernel classifiers. By incorporating the kernel learning meth-
ods for semi-supervised learning, multiple instance learning,
etc., the proposed framework can be adopted to develop metric
learning approaches for many other applications. By replacing
the degree-2 polynomial kernel with nonlinear kernel func-
tions which satisfy the Mercer’s condition [45], the proposed
framework can also be extended to nonlinear metric learning.

One limitation of the proposed doublet-SVM and triplet-
SVM is that a two-step greedy strategy is used to learn the
positive semi-definite matrix M, and the solution is not glob-
ally optimal. In the future, we will study global optimization
algorithms for the proposed kernel classification framework,
and develop nonlinear metric learning methods.

APPENDIX A
THE DUAL OF DOUBLET-SVM

According to the original problem of doublet-SVM in (40),
its Lagrangian can be defined as follows:

L (M, b, ξ,α,β) =
1

2
‖M‖2F + C

∑
l
ξl

−
∑

l
αl

[
hl

(
(xl,1 − xl,2)

T
M(xl,1 − xl,2) + b

)
− 1 + ξl

]
−
∑

l
βlξl, (51)

where α and β are the Lagrange multipliers which satisfy
αl ≥ 0 and βl ≥ 0, ∀l. To convert the original problem to its
dual, we let the derivative of the Lagrangian with respect to
M, b and ξ to be 0:

∂L (M, b, ξ,α,β)

∂M
= 0⇒

M−
∑

l
αlhl (xl,1 − xl,2) (xl,1 − xl,2)

T
= 0, (52)

∂L (M, b, ξ,α,β)

∂b
= 0⇒

∑
l
αlhl = 0, (53)

∂L (M, b, ξ,α,β)

∂ξl
= 0⇒

C − αl − βl = 0⇒ 0 < αl < C, ∀l. (54)

Equation (52) implies the relationship between M and α
as follows:

M =
∑

l
αlhl (xl,1 − xl,2) (xl,1 − xl,2)

T
. (55)

Substituting (52)∼(54) back into the Lagrangian, we get the
Lagrange dual problem of doublet-SVM as follows:

max
α
− 1

2

∑
i,j
αiαjhihjKD (zi, zj) +

∑
i
αi (56)

s.t. 0 ≤ αl ≤ C, ∀l, (57)∑
l
αlhl = 0. (58)
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TABLE V
THE CLASSIFICATION ERROR RATES (%) BY USING THE RANDOM SELECTION STRATEGY AND THE NN SELECTION STRATEGY FOR SELECTING

DOUBLETS/TRIPLETS ON THE UCI DATASETS

Method Doublet-SVM (Random) Doublet-SVM (NN) Triplet-SVM (Random) Triplet-SVM (NN)

Parkinsons 6.92 5.68 8.48 7.89
Sonar 15.46 13.07 15.04 13.93

Statlog Segmentation 2.46 2.12 2.80 2.29
Breast Tissue 38.03 38.38 36.78 33.37

ILPD 33.49 34.48 33.20 31.57
Statlog Satellite 11.07 11.05 11.17 10.80

Blood Transfusion 34.40 33.63 32.73 33.91
SPECTF Heart 29.52 27.27 30.27 28.34

Cardiotocography 20.01 18.59 20.41 19.63
Letter 8.24 2.80 6.38 2.95

TABLE VI
THE CLASSIFICATION ERROR RATES (%) BY USING THE RANDOM SELECTION STRATEGY AND THE NN SELECTION STRATEGY TO SELECT

DOUBLETS/TRIPLETS ON THE HANDWRITTEN DIGIT DATASETS

Method Doublet-SVM (Random) Doublet-SVM (NN) Triplet-SVM (Random) Triplet-SVM (NN)

MNIST 3.41 3.19 3.84 2.92
USPS 5.49 5.43 5.65 5.78

Semeion 6.43 5.09 6.96 4.71

APPENDIX B
THE DUAL OF TRIPLET-SVM

According to the original problem of triplet-SVM in (46),
its Lagrangian can be defined as follows:

L (M, ξ,α,β) =
1

2
‖M‖2F + C

∑
l
ξl

−
∑

l
αl

[
(xl,1 − xl,3)

T
M(xl,1 − xl,3)

−(xl,1 − xl,2)
T
M(xl,1 − xl,2)

]
+
∑

l
αl −

∑
l
αlξl −

∑
l
βlξl, (59)

where α and β are the Lagrange multipliers, which satisfy
αl ≥ 0 and βl ≥ 0, ∀l. To convert the original problem to its
dual, we let the derivative of the Lagrangian with respect to
M and ξ to be 0:

∂L (M, ξ,α,β)

∂M
= 0⇒

M−
∑

l
αl

[
(xl,1 − xl,3) (xl,1 − xl,3)

T

− (xl,1 − xl,2) (xl,1 − xl,2)
T
]
= 0, (60)

∂L (M, ξ,α,β)

∂ξl
= 0⇒

C − αl − βl = 0⇒ 0 < αl < C, ∀l. (61)

Equation (60) implies the relationship between M and α
as follows:

M =
∑

l
αl

[
(xl,1 − xl,3) (xl,1 − xl,3)

T

− (xl,1 − xl,2) (xl,1 − xl,2)
T
]
. (62)

Substituting (60) and (61) back into the Lagrangian, we get
the Lagrange dual problem of triplet-SVM as follows:

max
α

− 1

2

∑
i,j
αiαjKT (ti, tj) +

∑
i
αi (63)

s.t. 0 ≤ αl ≤ C, ∀l. (64)
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