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This paper presents an efficient image denoising scheme by using principal component analysis (PCA)

with local pixel grouping (LPG). For a better preservation of image local structures, a pixel and its

nearest neighbors are modeled as a vector variable, whose training samples are selected from the local

window by using block matching based LPG. Such an LPG procedure guarantees that only the sample

blocks with similar contents are used in the local statistics calculation for PCA transform estimation, so

that the image local features can be well preserved after coefficient shrinkage in the PCA domain to

remove the noise. The LPG-PCA denoising procedure is iterated one more time to further improve the

denoising performance, and the noise level is adaptively adjusted in the second stage. Experimental

results on benchmark test images demonstrate that the LPG-PCA method achieves very competitive

denoising performance, especially in image fine structure preservation, compared with state-of-the-art

denoising algorithms.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Noise will be inevitably introduced in the image acquisition
process and denoising is an essential step to improve the image
quality. As a primary low-level image processing procedure, noise
removal has been extensively studied and many denoising
schemes have been proposed, from the earlier smoothing filters
and frequency domain denoising methods [25] to the lately
developed wavelet [1–10], curvelet [11] and ridgelet [12] based
methods, sparse representation [13] and K-SVD [14] methods,
shape-adaptive transform [15], bilateral filtering [16,17], non-local
mean based methods [18,19] and non-local collaborative filtering
[20]. With the rapid development of modern digital imaging
devices and their increasingly wide applications in our daily life,
there are increasing requirements of new denoising algorithms for
higher image quality.

Wavelet transform (WT) [24] has proved to be effective in
noise removal [1–10]. It decomposes the input signal into multiple
scales, which represent different time-frequency components of
the original signal. At each scale, some operations, such as
thresholding [1,2] and statistical modeling [3–5], can be per-
formed to suppress noise. Denoising is accomplished by trans-
forming back the processed wavelet coefficients into spatial
domain. Late development of WT denoising includes ridgelet
ll rights reserved.

hang).
[12] and curvelet [11] methods for line structure preservation.
Although WT has demonstrated its efficiency in denoising, it uses
a fixed wavelet basis (with dilation and translation) to represent
the image. For natural images, however, there is a rich amount of
different local structural patterns, which cannot be well repre-
sented by using only one fixed wavelet basis. Therefore, WT-based
methods can introduce many visual artifacts in the denoising
output.

To overcome the problem of WT, in [21] Muresan and Parks
proposed a spatially adaptive principal component analysis (PCA)
based denoising scheme, which computes the locally fitted basis
to transform the image. Elad and Aharon [13,14] proposed sparse
redundant representation and K-SVD based denoising algorithm
by training a highly over-complete dictionary. Foi et al. [15]
applied a shape-adaptive discrete cosine transform (DCT) to the
neighborhood, which can achieve very sparse representation of
the image and hence lead to effective denoising. All these
methods show better denoising performance than the conven-
tional WT-based denoising algorithms.

The recently developed non-local means (NLM) approaches
use a very different philosophy from the above methods in noise
removal. The idea of NLM can be traced back to [23], where the
similar image pixels are averaged according to their intensity
distance. Similar ideas were used in the bilateral filtering methods
[16,17], where both the spatial and intensity similarities are
exploited for pixel averaging. In [18], the NLM denoising frame-
work was well established. Each pixel is estimated as the
weighted average of all the pixels in the image, and the weights
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are determined by the similarity between the pixels. This scheme
was improved in [19], where the pair-wise hypothesis testing was
used in the NLM estimation. Inspired by the success of NLM
methods, recently Dabov et al. [20] proposed a collaborative
image denoising scheme by patch matching and sparse 3D
transform. They searched for similar blocks in the image by
using block matching and grouped those blocks into a 3D cube. A
sparse 3D transform was then applied to the cube and
noise was suppressed by applying Wiener filtering in the
transformed domain. The so-called BM3D algorithm achieves
remarkable denoising results yet its implementation is a little
complex.

In this paper we present an efficient PCA-based denoising
method with local pixel grouping (LPG). PCA is a classical de-
correlation technique in statistical signal processing and it is
pervasively used in pattern recognition and dimensionality
reduction, etc. [26]. By transforming the original dataset into
PCA domain and preserving only the several most significant
principal components, the noise and trivial information can be
removed. In [21], a PCA-based scheme was proposed for
image denoising by using a moving window to calculate the local
statistics, from which the local PCA transformation matrix was
estimated. However, this scheme applies PCA directly to the noisy
image without data selection and many noise residual and visual
artifacts will appear in the denoised outputs.

In the proposed LPG-PCA, we model a pixel and its nearest
neighbors as a vector variable. The training samples of this
variable are selected by grouping the pixels with similar local
spatial structures to the underlying one in the local window. With
such an LPG procedure, the local statistics of the variables can be
accurately computed so that the image edge structures can be
well preserved after shrinkage in the PCA domain for noise
removal.

As shown in Fig. 1, the proposed LPG-PCA algorithm has two
stages. The first stage yields an initial estimation of the image by
removing most of the noise and the second stage will further
refine the output of the first stage. The two stages have the same
procedures except for the parameter of noise level. Since the noise
is significantly reduced in the first stage, the LPG accuracy will be
much improved in the second stage so that the final denoising
result is visually much better. Compared with WT that uses a fixed
basis function to decompose the image, the proposed LPG-PCA
method is a spatially adaptive image representation so that it can
better characterize the image local structures. Compared with
NLM and the BM3D methods, the proposed LPG-PCA method can
use a relatively small local window to group the similar pixels for
PCA training, yet it yields competitive results with state-of-the-art
BM3D algorithm.

The rest of the paper is structured as follows. Section 2 briefly
reviews the procedure of PCA. Section 3 presents the LPG-PCA
denoising algorithm in detail. Section 4 presents the experimental
results and Section 5 concludes the paper.
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Fig. 1. Flowchart of the proposed two-
2. Principal component analysis (PCA)

Denote by x¼ ½x1 x2 . . . xm�
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the sample matrix of x, where xj
i, j=1,2,y,n, are the discrete

samples of variable xi, i=1,2,y,m. The ith row of sample matrix X,
denoted by

Xi ¼ ½x
1
i x2

i . . . xn
i � ð2:2Þ

is called the sample vector of xi. The mean value of Xi is calculated
as

mi ¼
1

n

Xn

j ¼ 1

XiðjÞ ð2:3Þ

and then the sample vector Xi is centralized as

X i ¼ Xi � mi ¼ ½x
1
i x2

i . . . xn
i � ð2:4Þ

where xj
i ¼ xj

i � mi. Accordingly, the centralized matrix of X is

X ¼ ½X
T

1 X
T

2 . . . X
T

m�
T ð2:5Þ

Finally, the co-variance matrix of the centralized dataset is
calculated as

X¼
1

n
XX

T
ð2:6Þ

The goal of PCA is to find an orthonormal transformation
matrix P to de-correlate X, i.e. Y ¼ PX so that the co-variance
matrix of Y is diagonal. Since the co-variance matrix X is
symmetrical, it can be written as:

X¼UKUT
ð2:7Þ

where U¼ ½f1 f2 . . . fm� is the m�m orthonormal eigenvector
matrix and K¼ diagfl1; l2; . . . ; lmg is the diagonal eigenvalue
matrix with l1Zl2Z � � �Zlm. The terms f1;f2; . . . ;fm and
l1; l2; . . . ; lm are the eigenvectors and eigenvalues of X. By setting

P¼UT
ð2:8Þ

X can be decorrelated, i.e. Y ¼ PX and K¼ ð1=nÞYY
T
.

An important property of PCA is that it fully de-correlates the
original dataset X. Generally speaking, the energy of a signal will
concentrate on a small subset of the PCA transformed dataset,
while the energy of noise will evenly spread over the whole
dataset. Therefore, the signal and noise can be better distin-
guished in the PCA domain.
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3. LPG-PCA denoising algorithm

3.1. Modeling of spatially adaptive PCA denoising

As in previous literature, we assume that the noise u corrupted
in the original image I is white additive with zero mean and
standard deviation s, i.e. Iu ¼ Iþu, where Iu is the observed noisy
image. The image I and noise u are assumed to be uncorrelated.
The goal of denoising is to obtain an estimation, denoted by Î, of I

from the observation Iu. The denoised image Î is expected to be as
close to I as possible.

An image pixel is described by two quantities, the spatial
location and its intensity, while the image local structure is
represented as a set of neighboring pixels at different intensity
levels. Since most of the semantic information of an image is
conveyed by its edge structures, edge preservation is highly
desired in image denoising. To this end, in this paper we model a
pixel and its nearest neighbors as a vector variable and perform
noise reduction on the vector instead of the single pixel.

Referring to Fig. 2, for an underlying pixel to be denoised, we
set a K�K window centered on it and denote by x¼ ½x1 . . . xm�

T,
m¼ K2, the vector containing all the components within the
window. Since the observed image is noise corrupted, we denote
by

xt ¼ xþt ð3:1Þ

the noisy vector of x, where xt ¼ ½xu1 . . . xum�
T , t¼ ½u1 . . . um�

T and
xuk ¼ xkþuk, k¼ 1; . . . ;m. To estimate x from xt, we view them as
(noiseless and noisy) vector variables so that the statistical
methods such as PCA can be used.

In order to remove the noise from xt by using PCA, we need a
set of training samples of xt so that the covariance matrix of xt

and hence the PCA transformation matrix can be calculated. For
this purpose, we use an L� L (L4K) training block centered on xt

to find the training samples, as shown in Fig. 2. The simplest way
is to take the pixels in each possible K�K block within the L� L

training block as the samples of noisy variable xt. In this way,
there are totally (L�K+1)2 training samples for each component
xuk of xt. However, there can be very different blocks from the
given central K�K block in the L� L training window so
that taking all the K�K blocks as the training samples of xt

will lead to inaccurate estimation of the covariance matrix of xt,
which subsequently leads to inaccurate estimation of the PCA
transformation matrix and finally results in much noise residual
(referring to Section 3.4 for an example). Therefore, selecting and
grouping the training samples that similar to the central K�K

block is necessary before applying the PCA transform for
denoising.
The K×K
variable block 

The L×L
training block

The pixel to 
be denoised

Fig. 2. Illustration of the modeling of LPG-PCA based denoising.
3.2. Local pixel grouping (LPG)

Grouping the training samples similar to the central K�K

block in the L� L training window is indeed a classification
problem and thus different grouping methods, such as block
matching, correlation-based matching, K-means clustering, etc.,
can be employed based on different criteria. Among them, the
block matching method may be the simplest yet very efficient
one. In this paper, we employ it for LPG.

There are totally (L�K+1)2 possible training blocks of xt in the

L� L training window. We denote by x
,u

0 the column sample vector

containing the pixels in the central K�K block and denote by x
,u

i ,

i=1,2,y, (L�K+1)2
�1, the sample vectors corresponding to the

other blocks. Let x
,

0 and x
,

i be the associated noiseless sample

vectors of x
,u

0 and x
,u

i , respectively. It can be easily calculated that

ei ¼
1

m

Xm

k ¼ 1

x
,u

0ðkÞ � x
,u

i ðkÞ
2
�

1

m

Xm

k ¼ 1

x
,

0ðkÞ � x
,

iðkÞ
2þ2s2 ð3:2Þ

In (3.2) we used the fact that noise u is white and uncorrelated
with signal. With (3.2), if

eioTþ2s2 ð3:3Þ

where T is a preset threshold, then we select x
,u

i as a sample vector
of xt.

Suppose we select n sample vectors of xt, including the central

vector x
,u

0. For the convenience of expression, we denote these

sample vectors as x
,u

0, x
,u

1; . . . ; x
,u

n�1. The noiseless counterparts of

these vectors are denoted as x
,

0, x
,

1; . . . ; x
,

n�1, accordingly. The

training dataset for xt is then formed by

Xt ¼ ½x
,u

0 x
,u

1 . . . x
,u

n�1� ð3:4Þ

The noiseless counterpart of Xt is denoted as X¼ ½x
,

0

x
,

1 . . . x
,

n�1�.
To guarantee there are enough samples in computing the PCA

transformation matrix, n could not be too small. In practice, we
will use at least c �m training samples of xt in denoising, where
constant c¼ 8� 10. That is to say, if noc �m, we will use the best
c �m matched samples in PCA training. Usually, the best c �m

matched samples are robust to estimate the image local statistics,
and this operation makes the algorithm more stable to calculate
the PCA transformation matrix.

Now the problem is how to estimate the noiseless dataset X
from the noisy measurement Xt. Once X is estimated, the central
block and consequently the central underlying pixel can be
extracted. Applying such procedures to each pixel and then the
whole image Iu can be denoised.

3.3. LPG-PCA based denoising

In the m�n dataset matrix Xt, each component xuk, k=1,2,y,m,
of the vector variable xt has n samples. Denote by Xu

k the row
vector containing the n samples of xuk. Then the dataset Xt can be
represented as Xt ¼ ½ðXu

1Þ
T . . . ðXu

mÞ
T
�T . Similarly, we have

X¼ ½XT
1 . . . XT

m�
T , where Xk is the row vector containing the n

samples of xk, and Xt ¼XþV, where V¼ ½VT
1 . . . VT

m�
T is the

dataset of noise variable t and Vk is the row sample vector of uk.
Next we centralize dataset Xt. The mean value of Xu

k is mk ¼

ð1=nÞ
Pn

i ¼ 1 Xu
kðiÞ, and then Xu

k is centralized by X
u
k ¼ Xu

k � mk. Since
the noise uk is zero-mean, Xk can also be centralized by X k ¼ Xk�

mk. Then the centralized datasets of Xt and X are obtained as
Xt ¼ ½ðX

u
1Þ

T . . . ðX
u
mÞ

T
�T and X ¼ ½X

T

1 . . . X
T

m�
T , and we have

Xt ¼XþV ð3:5Þ
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Refer to Section 2, by computing the covariance matrix of X,
denoted by Xx , the PCA transformation matrix Px can be obtained.
However, the available dataset Xt is noise corrupted so that Xx

cannot be directly computed. With the linear model (3.5), we have

Xxt
¼

1

n
XtX

T

t ¼
1

n
XX

T
þXVT

þVX
T
þVVT

� �

Since X and V are uncorrelated, items XVT and VX
T

will be nearly
zero matrices and thus:

Xxt
�

1

n
XX

T
þVVT

� �
¼XxþXt ð3:6Þ

where Xx ¼ 1=n
� �

XX
T

and Xt ¼ 1=n
� �

VVT .
The component Xtði; jÞ is the correlation between ui and uj.

Since ui and uj are uncorrelated for ia j, we know that Xt is a
m�m diagonal matrix with all the diagonal components being s2.
In other words, Xt can be written as s2I, where I is the identity
matrix. Then it can be readily proved that the PCA transformation
matrix Px associated with Xx is the same as the PCA transforma-
tion matrix associated with Xxt

.
As in (2.7), we can decompose Xx as

Xx ¼UxKxUT
x ð3:7Þ

where Ux is the m�m orthonormal eigenvector matrix and Kx is
the diagonal eigenvalue matrix. Since Ux is an orthonormal
matrix, we can write Xt as

Xt ¼ ðs2IÞUxUT
x ¼Ux ðs2IÞUT

x ¼UxXtU
T
x

Thus we have

Xxt
¼XxþXt ¼UxKxUT

xþUx ðs2IÞUT
x

¼Ux ðKxþs2IÞUT
x ¼UxKxt

UT
x ð3:8Þ

where Kxt
¼Kxþs2I. Eq. (3.8) implies that Xxt

and Xx have the
same eigenvector matrix Ux . Thus, in practical implementation
we can directly compute Ux by decomposing Xxt

, instead of Xx ,
and then the orthonormal PCA transformation matrix for X is set
as

Px ¼UT
x ð3:9Þ

Applying Px to dataset Xt, we have

Yt ¼ Px Xt ¼ Px XþPx V¼ YþVY

where Y ¼ Px X is the decorrelated dataset for X and VY ¼ Px V is
the transformed noise dataset for V. Since Y and noise VY are
uncorrelated, we can easily derive that the covariance matrix of Yt

is

Xyt
¼

1

n
YtY

T

t ¼Xy þXty ð3:10Þ

where Xy ¼Kx is the covariance matrix of decorrelated dataset Y
and Xty ¼ PxXtPT

x is the covariance matrix of noise dataset VY .
In the PCA transformed domain Yt, most energy of noiseless

dataset Y concentrates on the several most important compo-
nents, while the energy of noise VY distributes much more evenly.
The noise in Yt can be suppressed by using the linear minimum
mean square-error estimation (LMMSE) technique. Since Yt is

centralized, the LMMSE of Y
,

k, i.e. the kth row of Y , is obtained as

^
Y
,

k ¼wk � Y
,k

u ð3:11Þ

where the shrinkage coefficient

wk ¼Xy ðk; kÞ=Xy ðk; kÞþXty ðk; kÞ ð3:12Þ

and Y
,k

u is the kth row of Yt. In flat zones, Xy ðk; kÞ is much smaller

than Xty ðk; kÞ so that wk is close to 0. Hence most of the noise will
be suppressed in
^
Y
,

k by LMMSE operator
^
Y
,

k ¼wk � Y
,k

u. In

implementation we first calculate Xyt
from the available noisy

dataset Yt and then estimate Xy ðk; kÞ by Xy ðk; kÞ ¼Xyt
ðk; kÞ �Xty

ðk; kÞ. In flat zones, it is often that Xyt
ðk; kÞ �Xty ðk; kÞr0, and

then we set Xy ðk; kÞ ¼ 0. In this case wk will be exactly 0 and all

the noise in Y
,k

u will be removed.

Denote by Ŷ the matrix of all
^
Y
,

k. By transforming Ŷ back to the

time domain, we obtain the denoised result of Xt as

X̂ ¼ PT
x � Ŷ ð3:13Þ

In (3.13), we used the fact that P�1
x ¼ PT

x . Adding the mean values

mk back to X̂ gives the denoised dataset X̂. The estimation of the

central block x
,

0, denoted as
^
x
,

0, can then be extracted from X̂ and
finally the denoised result of the underlying central pixel can be

extracted from
^
x
,

0. Applying the above procedure to each pixel
leads to the full denoised image of Iu.

3.4. Denoising refinement in the second stage

Most of the noise will be removed by using the denoising
procedures described in Sections 3.1–3.3. However, there is still
much visually unpleasant noise residual in the denoised image.
Fig. 3 shows an example. Fig. 3a is the original image Cameraman;
Fig. 3b is the noisy version of it (s=20, PSNR=22.1 dB); Fig. 3c is
the denoised image (PSNR=29.8 dB) by using the proposed LPG-
PCA method in Sections 3.1–3.3. Although the PSNR is much
improved, we can still see much noise residual in the denoising
output.

There are mainly two reasons for the noise residual. First,
because of the strong noise in the original dataset Xt, the
covariance matrix Xxt

is much noise corrupted, which leads to
estimation bias of the PCA transformation matrix and hence
deteriorates the denoising performance; second, the strong noise
in the original dataset will also lead to LPG errors, which
consequently results in estimation bias of the covariance matrix
Xx (or Xxt

). Therefore, it is necessary to further process the
denoising output for a better noise reduction. Since the noise has
been much removed in the first round of LPG-PCA denoising, the
LPG accuracy and the estimation of Xx (or Xxt

) can be much
improved with the denoised image. Thus we can implement the
LPG-PCA denoising procedure for the second round to enhance the
denoising results.

As shown in Fig. 1, the noise level should be updated in the
second stage of LPG-PCA denoising algorithm. Denote by Î the
denoised version of noisy image Iu in the first stage. We can write Î

as Î ¼ Iþus, where us is the residual in the denoised image. We
need to estimate the level of us, denoted by ss ¼

ffiffiffiffiffiffiffiffiffiffi
E½u2

s �
p

, and input
it to the second stage of LPG-PCA denoising. Here we estimate ss

based on the difference between Î and Iu. Let

~I ¼ Iu � Î ¼ u� us ð3:14Þ

We have:

E½~I
2
� ¼ E½u2�þE½u2

s � � 2E½u � us�

¼ s2þs2
s � 2E½u � us� ð3:15Þ

We approximately view us as the smoothed version of noise u,
and it contains mainly the low frequency component of u. Let
~u ¼ u� us be their difference and ~u contains mainly the high
frequency component of u. There is E½u � us� ¼ E½~u � us�þE½u2

s �. In
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Fig. 3. (a) Original image Cameraman; (b) noisy image (PSNR=22.1 dB); (c) denoised image after the first stage of the proposed method (PSNR=29.8 dB) and (d) denoised

image after the second stage of the proposed method (PSNR=30.1 dB). We see that the visual quality is much improved after the second stage refinement.
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general, E½~u � us� is much smaller compared with E½u2
s �. For example,

after the first stage denoising of noisy image Cameraman (s=20),
we have E½u2

s � ¼ 72 and E½~u � us� ¼ 17. For the convenience of
development, we remove E½~u � us� from E½u � us�, and let

E½u � us� ¼ E½~u � us�þE½u2
s � � E½u2

s � ¼ s
2
s

Thus from (3.15) we have

s2
s � s

2 � E½~I
2
� ð3:16Þ

In practice, us will include not only the noise residual but also
the estimation error of noiseless image I. Therefore, in imple-
mentation we let

ss ¼ cs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � E½~I

2
�

q
ð3:17Þ

where cso1 is a constant. We experimentally found that setting cs

around 0.35 can lead to satisfying denoising results for most of the
testing images. Fig. 3d shows the denoising results (PSNR=30.1
dB) of Cameraman after the second stage. Although the PSNR is not
improved too much on this image, we can clearly see that the
visual quality is much improved by effectively removing the noise
residual in the first stage.

3.5. Denoising of color images

There are two approaches to extending the proposed LPG-PCA
algorithm to color images. The first approach is to apply
separately LPG-PCA to each of the red, green and blue channels.
This approach is simple to implement but it ignores the spectral
correlation in the color image. The second approach is to form a
K�K�3 color variable cube with each K�K variable block
corresponding to the red, green or blue channel. Like in the
denoising of grey level image, the color variable cube is stretched
to a color variable vector of dimension 3K2. Then the training
samples of the color variable vector are selected in the local
L� L�3 window using the LPG procedure. All the other steps are
the same as those in the LPG-PCA denoising of grey level images.

Compared with the first approach, the second approach can
exploit both the spatial correlation and the spectral correlation in
denoising color images. However, there are two main problems.
First, the dimensionality of the color variable vector is three times
that of the gray level image, and this will increase significantly the
computational cost in the PCA denoising process. Second, the high
dimensionality of the color variable vector requires much more
training samples to be found in the LPG processing. Nonetheless,
we may not be able to find enough training samples in the local
neighborhood so that the covariance matrix of the color variable
vector may not be accurately estimated, and hence the denoising
performance can be reduced. With the above consideration, in this
paper we choose the first approach for LPG-PCA based color image
denoising due to its simplicity and robustness.
4. Experimental results

In the proposed LPG-PCA denoising algorithm, most of the
computational cost spends on LPG grouping and PCA transforma-
tion, and thus the complexity mainly depends on two parameters:
the size K of the variable block and the size L of training block. In
LPG grouping, it requires (2K2

�1) � (L�K+1)2 additions,
K2
� (L�K+1)2 multiplications and (L�K+1)2 ‘‘less than’’ logic

operations. Suppose in average S training samples are selected, i.e.
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Fig. 4. The test images Lena, Cameraman, Barbara, Peppers, House, Bloodcell, Paint, Monarch, Tower (color) and Parrot (color).

Table 1
The PSNR (dB) and SSIM results of the denoised images in the two stages by the proposed LPG-PCA method.

Images Lena Cameraman House Paint Monarch

First stage

s=10 33.6(0.9218) 33.9(0.9261) 35.4(0.9003) 33.5(0.9280) 34.0(0.9522)

s=20 29.5(0.8346) 29.8(0.8320) 31.8(0.8084) 29.3(0.8440) 29.6(0.8859)

s=30 27.1(0.7441) 27.3(0.7395) 29.3(0.7225) 26.8(0.7467) 27.0(0.8071)

s=40 25.4(0.6597) 25.5(0.6393) 27.3(0.6243) 25.0(0.6590) 25.2(0.7267)

Second stage

s=10 33.7(0.9243) 34.1(0.9356) 35.6(0.9012) 33.6(0.9311) 34.2(0.9594)

s=20 29.7(0.8605) 30.1(0.8902) 32.5(0.8471) 29.5(0.8683) 30.0(0.9202)

s=30 27.6(0.8066) 27.8(0.8558) 30.4(0.8185) 27.2(0.8088) 27.4(0.8769)

s=40 26.0(0.7578) 26.2(0.8211) 28.9(0.7902) 25.6(0.7569) 25.9(0.8378)

Images Barbara Peppers Bloodcell Tower (color) Parrot (color)

First stage

s=10 32.5(0.9357) 33.4(0.8909) 34.6(0.9137) 34.7(0.9047) 34.5(0.9198)

s=20 28.3(0.8530) 29.9(0.8177) 31.3(0.8587) 30.6(0.7922) 30.6(0.8337)

s=30 26.0(0.7663) 27.5(0.7332) 28.6(0.7864) 28.3(0.6772) 28.2(0.7434)

s=40 24.2(0.6741) 25.9(0.6447) 26.7(0.7076) 26.6(0.5718) 26.3(0.6564)

Second stage

s=10 32.5(0.9378) 33.3(0.8943) 34.8(0.9173) 34.8(0.9123) 34.6(0.9255)

s=20 28.5(0.8716) 30.1(0.8413) 32.0(0.8836) 31.1(0.8522) 31.1(0.8776)

s=30 26.2(0.8028) 27.9(0.7973) 29.6(0.8538) 29.1(0.8069) 29.0(0.8415)

s=40 24.5(0.7378) 26.7(0.7648) 28.0(0.8239) 27.8(0.7695) 27.5(0.8097)

The value in the parenthesis is the SSIM measure.
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the dataset Xt is of dimension K2
� S. Then in the PCA

transformation, it requires K2
� S+(S2

�1) �K4+(K2
�1) �K2

� S addi-
tions, K4

� (S+S2) multiplications, and an SVD decomposition of a
K2
�K2 definite covariance matrix. In this paper, we set K=5 and

L=41 in all the experiments to test the denoising performance.
The threshold T in the LPG grouping is set to 25.

In the implementation of LPG-PCA denoising, actually the
complete K�K block centered on the given pixel will be denoised.
Therefore, the finally restored value at a pixel can be set as the
average of all the estimates obtained by all windows containing
the pixel. This strategy was also used in [21]. By our experiments,
this can increase about 0.3 dB the noise reduction for most of the
test images.

The proposed LPG-PCA algorithm can be viewed as a comple-
tion and extension of the PCA-based denoising algorithm in [21].
We compare LPG-PCA with four representative and state-of-the-
art denoising algorithms: the wavelet-based denoising methods
[8,10]; the sparse representation based K-SVD denoising method
[14]; and the recently developed BM3D denoising method [20].1
1 We thank the authors of [8,10,14,20] for sharing their programs.
The BM3D method is one of the best denoising methods and it
has been viewed as a benchmark for denoising algorithm
evaluation. The ten test images (size: 256�256) used in the
experiments, including eight grey level images and two color
images, are shown in Fig. 4. We added Gaussian white noise of
different levels (s=10, 20, 30 and 40, respectively,) to the original
image and use the five denoising algorithms for noise removal.
Due to the limitation of space, in this paper we can only show
partial denoising results. The Matlab codes of our algorithm and
all the experimental results can be downloaded in the webpage
http://www.comp.polyu.edu.hk/�cslzhang/LPG-PCA-denoising.
htm.

We evaluate and compare the different methods by using two
measures: PSNR and SSIM [22]. Although PSNR can measure the
intensity difference between two images, it is well-known that it
may fail to describe the visual perception quality of the image. On
the other hand, how to evaluate the visual quality of an image is a
very difficult problem and it is currently an active research topic. The
SSIM index proposed in [22] is one of the most commonly used
measures for image visual quality assessment. Compared with PSNR,
SSIM can better reflect the structure similarity between the target
image and the reference image.

http://www.comp.polyu.edu.hk/~cslzhang/LPG-PCA-denoising.htm
http://www.comp.polyu.edu.hk/~cslzhang/LPG-PCA-denoising.htm
http://www.comp.polyu.edu.hk/~cslzhang/LPG-PCA-denoising.htm
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We first verify the improvement of the noise removal in the
second stage of the PLG-PCA method. Table 1 lists the PSNR and
SSIM measures of the first stage and second stage denoising
outputs on the test image set. We can see that the second stage
can improve 0.1–1.5 dB the PSNR values for different images under
different noise level (s is from 10 to 40). Although for some
images the second stage will not improve much the PSNR
measures, the SSIM measures, which can better reflect the
image visual quality, can be much improved. For instance, for
image Lena with noise level s=30, the SSIM measure is much
increased from 0.7441 to 0.8066 after the second stage denoising,
while the PSNR is increased by only 0.5 dB.
Table 2
The PSNR (dB) and SSIM results of the denoised images at different noise levels and by

Methods [10] [8]

Lena

s=10 33.1(0.9154) 33.2(0.9160)

s=20 29.2(0.8455) 29.4(0.8514)

s=30 27.2(0.7878) 27.5(0.7964)

s=40 25.7(0.7315) 26.0(0.7466)

Cameraman

s=10 33.2(0.9170) 33.7(0.9307)

s=20 29.1(0.8449) 29.6(0.8744)

s=30 26.8(0.7945) 27.5(0.8307)

s=40 25.3(0.7310) 26.0(0.7806)

House

s=10 34.4(0.8791) 34.8(0.8809)

s=20 31.3(0.8199) 32.1(0.8374)

s=30 29.4(0.7829) 30.2(0.8066)

s=40 28.1(0.7409) 28.9(0.7708)

Paint

s=10 33.0(0.9227) 33.5(0.9319)

s=20 29.0(0.8513) 29.6(0.8687)

s=30 26.9(0.7897) 27.5(0.8110)

s=40 25.6(0.7408) 26.0(0.7616)

Monarch

s=10 33.1(0.9442) 33.6(0.9527)

s=20 28.8(0.8912) 29.5(0.9076)

s=30 26.5(0.8370) 27.1(0.8583)

s=40 25.0(0.7916) 25.7(0.8179)

Barbara

s=10 31.6(0.9241) 31.6(0.9246)

s=20 27.4(0.8314) 27.2(0.8316)

s=30 25.1(0.7472) 25.0(0.7475)

s=40 23.5(0.6696) 23.5(0.6718)

Peppers

s=10 33.1(0.8853) 33.3(0.8901)

s=20 29.8(0.8272) 30.1(0.8381)

s=30 27.8(0.7781) 28.3(0.7968)

s=40 26.4(0.7339) 26.9(0.7552)

Blood cell

s=10 34.6(0.9125) 34.5(0.9136)

s=20 31.5(0.8706) 31.5(0.8790)

s=30 29.2(0.8338) 29.4(0.8473)

s=40 27.4(0.7899) 27.8(0.8129)

Tower (color)

s=10 34.2(0.9017) 34.6(0.9099)

s=20 30.5(0.8270) 31.1(0.8444)

s=30 28.5(0.7711) 29.2(0.7919)

s=40 27.3(0.7277) 27.9(0.7505)

Parrot (color)

s=10 34.0(0.9158) 34.1(0.9190)

s=20 30.3(0.8523) 30.6(0.8665)

s=30 28.2(0.8048) 28.6(0.8269)

s=40 26.7(0.7642) 27.2(0.7925)

The value in the parenthesis is the SSIM measurement.
We then compare the different methods on denoising. Table 2
list the PSNR and SSIM results by different methods on the 10
test images. Let’s first see the PSNR measures by different
methods. From Table 2 we see that the algorithm BM3D has
the highest PSNR measures. This is because it sufficiently exploits
the non-local redundancies in the image. The K-SVD algorithm
uses a pre-trained over-complete dictionary in the denoising
process and it achieves almost the same PSNR results as
those by the proposed LPG-PCA algorithm. The PSNR result
of LPG-PCA is higher than the wavelet-based methods [8,10],
and the wavelet-based method [10] has the lowest PSNR
value.
different schemes.

[14] [20] Proposed

33.5(0.9203) 33.9(0.9272) 33.7(0.9243)

29.7(0.8571) 30.2(0.8699) 29.7(0.8605)

27.8(0.8055) 28.3(0.8231) 27.6(0.8066)

26.2(0.7504) 27.3(0.7727) 26.0(0.7578)

33.9(0.9334) 34.4(0.9399) 34.1(0.9356)

29.9(0.8810) 30.6(0.8962) 30.1(0.8902)

27.9(0.8426) 28.5(0.8655) 27.8(0.8558)

26.5(0.8048) 27.1(0.8303) 26.2(0.8211)

35.5(0.8960) 36.2(0.9143) 35.6(0.9012)

32.7(0.8458) 33.3(0.8553) 32.5(0.8471)

30.7(0.8137) 31.6(0.8319) 30.4(0.8185)

29.1(0.7771) 30.7(0.8065) 28.9(0.7891)

33.5(0.9293) 33.7(0.9329) 33.6(0.9311)

29.6(0.8655) 29.9(0.8731) 29.5(0.8683)

27.5(0.8091) 27.7(0.8196) 27.2(0.8088)

26.0(0.7599) 26.6(0.7711) 25.6(0.7569)

33.5(0.9501) 33.9(0.9577) 34.2(0.9594)

29.6(0.9077) 30.1(0.9222) 30.0(0.9202)

27.4(0.8663) 28.0(0.8850) 27.4(0.8769)

25.9(0.8260) 26.6(0.8462) 25.9(0.8378)

32.3(0.9349) 32.7(0.9420) 32.5(0.9378)

28.4(0.8646) 28.9(0.8819) 28.5(0.8716)

26.3(0.7919) 26.8(0.8165) 26.2(0.8028)

24.7(0.7262) 25.0(0.7444) 24.5(0.7378)

33.4(0.8920) 33.6(0.8939) 33.3(0.8909)

30.3(0.8400) 30.6(0.8496) 30.1(0.8413)

28.4(0.7983) 28.8(0.8108) 27.9(0.7973)

27.1(0.7657) 27.2(0.7729) 26.7(0.7648)

35.0(0.9183) 35.0(0.9190) 34.8(0.9137)

32.3(0.8859) 32.3(0.8874) 32.0(0.8836)

29.9(0.8525) 30.2(0.8622) 29.6(0.8538)

28.4(0.8227) 28.0(0.8264) 28.0(0.8239)

34.7(0.9115) 35.0(0.9144) 34.8(0.9123)

31.4(0.8533) 31.6(0.8576) 31.1(0.8522)

29.3(0.8018) 29.7(0.8135) 29.1(0.8069)

27.9(0.7583) 28.3(0.7760) 27.8(0.7695)

34.3(0.9215) 34.6(0.9274) 34.6(0.9255)

30.8(0.8684) 31.2(0.8832) 31.1(0.8776)

28.8(0.8308) 29.3(0.8505) 29.0(0.8415)

27.4(0.7994) 27.5(0.8179) 27.5(0.8097)
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Fig. 5. The denoising results of Lena by different schemes. (a) Noiseless Lena; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed LPG-PCA

method.
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Let’s then focus on the SSIM measure and the visual quality
evaluation of these denoising algorithms. From Table 2 we see
that BM3D again achieves the highest SSIM measures. Although
the proposed LPG-PCA has almost the same PSNR results as
K-SVD, it has higher SSIM measures than K-SVD. Again, the two
wavelet-based denoising methods have the lowest SSIM
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Fig. 6. The denoising results of Cameraman by different schemes. (a) Noiseless Cameraman; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the

proposed LPG-PCA method.
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measures. Figs. 5–14 show the cropped and zoom-in denoising
results of the ten noisy images (with noise level s=20) by
different methods. The sub-figure (a) is the original image; sub-
figures (b–f) are the denoised images by the methods in
[8,10,14,20] and the proposed LPG-PCA methods, respectively.
We see that although BM3D has higher SSIM measures than
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Fig. 7. The denoising results of House by different schemes. (a) Noiseless House; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed LPG-

PCA method.
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LPG-PCA, their denoised images are very similar in real visual
perception, and they have much better visual quality than all the
other methods. The K-SVD method generates many visually
disturbing artifacts in the denoised image. The two wavelet-
based denoising methods [8,10] have the worst visual quality. This
is because in WT, the same wavelet basis function (with dilation
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Fig. 8. The denoising results of Monarch by different schemes. (a) Noiseless Monarch; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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and translation) is used to de-correlate the many different image
structures. Often this is not efficient enough to represent the
image content so that many denoising errors appear.
The proposed LPG-PCA denoising algorithm uses PCA to
adaptively compute the local image decomposition transform so
that it can better represent the image local structure. In addition, the
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Fig. 9. The denoising results of Paint by different schemes. (a) Noiseless Paint; denoised images by methods (b) [10], (c) [8]; (d) [14]; (e) [20]; and (f) the proposed LPG-PCA

method.
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LPG operation is employed to ensure that only the right samples are
involved in PCA training. The denoised images by BM3D and LPG-
PCA are very similar in terms of visual perception. Both of them can
well preserve the image edges and remove the noise without
introducing too many artifacts. Although the PSNR and SSIM
measures of LPG-PCA are lower than that of BM3D, LPG-PCA has
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Fig. 10. The denoising results of Peppers by different schemes. (a) Noiseless Peppers; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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competitive results in edge preservation. BM3D works better in
preserving large-grain edges and denoising smoothing areas
(e.g. the image House), where there are a rich amount of
non-local redundancies that could be exploited, while LPG-PCA
works better in preserving image fine structures (e.g. the
eye area of image Lena and the camera boundary in image
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Fig. 11. The denoising results of Barbara by different schemes. (a) Noiseless Barbara; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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Cameraman), where BM3D may generate some artifacts because
there are not so many non-local redundancies around those
structures.
In summary, as a non-local collaborative denoising technique,
BM3D can effectively exploit the non-local redundancy in the
image to suppress noise. Therefore, it could have very high
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Fig. 12. The denoising results of Bloodcell by different schemes. (a) Noiseless Bloodcell; denoised images by methods (b) [10]; (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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PSNR and SSIM measures. The large-grain structures and
smooth areas could be well reconstructed. However, for fine-
grain structures, incorrect non-local information may be introduced
by BM3D for image restoration so that some visible artifacts can be
generated in those areas. The proposed LPG-PCA method can be
viewed as a semi-non-local scheme. It uses a local window to
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Fig. 13. The denoising results of color Tower by different schemes. (a) Noiseless Tower; denoised images by methods (b) [10], (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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Fig. 14. The denoising results of color Parrot by different schemes. (a) Noiseless Parrot; denoised images by methods (b) [10], (c) [8]; (d) [14]; (e) [20]; and (f) the proposed

LPG-PCA method.
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adaptively train the local transform. The vector variable for denoising
is defined on a small local block so that LPG-PCA works well in fine-
grain edge preservation.
5. Conclusion

This paper proposed a spatially adaptive image denoising scheme
by using principal component analysis (PCA). To preserve the local
image structures when denoising, we modeled a pixel and its
nearest neighbors as a vector variable, and the denoising of the pixel
was converted into the estimation of the variable from its noisy
observations. The PCA technique was used for such estimation and
the PCA transformation matrix was adaptively trained from the local
window of the image. However, in a local window there can have
very different structures from the underlying one; therefore, a
training sample selection procedure is necessary. The block match-
ing based local pixel grouping (LPG) was used for such a purpose and
it guarantees that only the similar sample blocks to the given one are
used in the PCA transform matrix estimation. The PCA transforma-
tion coefficients were then shrunk to remove noise. The above LPG-
PCA denoising procedure was iterated one more time to improve the
denoising performance. Our experimental results demonstrated that
LPG-PCA can effectively preserve the image fine structures while
smoothing noise. It presents a competitive denoising solution
compared with state-of-the-art denoising algorithms, such as BM3D.
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