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Abstract: 

Single sensor digital color cameras capture only one of the three primary colors at each pixel and a 

process called color demosaicking (CDM) is used to reconstruct the full color images. Most CDM 

algorithms assume the existence of high local spectral redundancy in estimating the missing color 

samples. However, for images with sharp color transitions and high color saturation, such an 

assumption may be invalid and visually unpleasant CDM errors will occur. In this paper we exploit 

the image non-local redundancy to improve the local color reproduction result. First, multiple local 

directional estimates of a missing color sample are computed and fused according to local gradients. 

Then nonlocal pixels similar to the estimated pixel are searched to enhance the local estimate. An 

adaptive thresholding method rather than the commonly used nonlocal means filtering is proposed to 

improve the local estimate. This allows the final reconstruction to be performed at the structural level 

as opposed to the pixel level. Experimental results demonstrate that the proposed local directional 

interpolation and nonlocal adaptive thresholding (LDI-NAT) method outperforms many 

state-of-the-art CDM methods in reconstructing the edges and reducing color interpolation artifacts, 

leading to higher visual quality of reproduced color images.  
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1. Introduction 

Single sensor (CCD/CMOS) digital color cameras capture images with a color filter array (CFA), 

such as the Bayer pattern CFA [1]. At each pixel, only one of the three primary colors (red, green and 

blue) is sampled; the missing color samples are estimated by a process called color demosaicking 

(CDM) to reconstruct full color images. The color reproduction quality depends on the image contents 

and the employed CDM algorithms [19]. Various CDM algorithms [3-18] have been proposed in the 

past decades. The classical second order Laplacian correction (SOLC) [3-4] algorithm is one of the 

benchmark CDM schemes due to its simplicity and efficiency. The recently developed methods 

include the successive approximation based CDM by Li [9], the adaptive homogeneity CDM by 

Hirakawa et al. [10], the directional linear minimum mean square-error estimation (DLMMSE) based 

CDM method by Zhang et al. [12], the directional filtering and a posteriori decision CDM by Menon 

et al. [13], the sparse representation based method by Mairal et al. [14], and the nonlocal means based 

self-similarity driven (SSD) method by Buades et al. [15], etc. A recent review of CDM methods can 

be found in [20]. 

Most of the existing CDM methods assume high local spectral correlations. This assumption may 

well be valid for images such as those in the Kodak dataset [2]. The Kodak dataset was not originally 

released for CDM but it has been widely used as a benchmark dataset in evaluating CDM algorithms. 

Inadvertently, the Kodak dataset misled the research of CDM to some extent. It was pointed out in [15, 

16, 20] that images in the Kodak dataset have much higher spectral correlation, lower color saturation 

and smaller chromatic gradients than images in other datasets, e.g., the McMaster dataset used in this 

paper (refer to Section 3.1 for more information). Compared with the digital color images captured by 

current digital cameras, the images in Kodak dataset are smoother and less saturated, and hence they 

are less representative for the applications such as CDM. On the McMaster dataset, the simple SOLC 

method outperforms many lately developed more complex methods. The reason appears to be that 

these methods were developed aiming to reproduce the problematic Kodak images, without 

considering a wider range of test images.  
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In natural images the spectral correlation is often weak around object boundaries. Consequently, 

many CDM algorithms derived under the assumption of high spectral correlation may fail in areas of 

edges. One way to improve color reproduction near edges is to exploit the nonlocal spatial and 

spectral redundancies. In natural images, there can be many similar structures/patterns throughout the 

scene. The most similar pixels to the given one can be far from it. Thus we can relax the constraint of 

local neighborhood to nonlocal neighborhood when enhancing the given pixel. The nonlocal means 

(NLM) filters have been widely used in image processing, such as denoising and deblurring [21-26]. 

The mathematical framework of NLM denoising was well established by Buades et al. in [21], where 

the given pixel x is estimated as the weighted average of all pixels whose Gaussian neighborhoods 

look like the neighborhood of x. The recently developed SSD algorithm by Buades et al. [15] is an 

NLM based CDM scheme. In Section 3 we will see that SSD has similar PSNR results to the classical 

SOLC algorithm on the McMaster dataset but it achieves much better perceptual quality.   

In this paper, we propose to couple local directional interpolation (LDI) with nonlocal 

enhancement for a more effective CDM. The employed CDM strategy is very simple: initial local 

CDM by LDI, followed by a nonlocal enhancement process. In the initial CDM, only the local 

spatial-spectral correlation within a compact local window is exploited to avoid CDM errors caused 

by high color variations around color edges of high saturation. Since directional information is crucial 

for edge preservation, we use directional filters to interpolate the missing color samples. The obtained 

directional estimates are then fused according to the local directional gradients. The results of LDI can 

be augmented by exploiting non-local redundancy to reduce initial CDM errors. The similar pixels to 

the estimated pixel are chosen by patch matching (in practice, a relatively large local window is used), 

and the matched pixels are used to enhance the initial CDM result.  

A straightforward way to utilize nonlocal redundancy is NLM filtering, as in NLM denoising 

[21-25] and the SSD method [15]. With NLM, an initially demosaicked pixel is re-estimated as the 

weighted average of the similar pixels to it. Although NLM can remove much the CDM noise (i.e. 

initial CDM errors), it blurs sharp edges and fails to remove bad color artifacts accompanying high 

saturation object boundaries. To overcome these drawbacks, we propose a novel adaptive 
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thresholding method to make better use of non-local redundancy than the NLM filtering. Different 

from NLM filtering, which applies weighted average directly to the pixel to be enhanced, we model 

the local patch centered on the pixel as a signal vector and compute the statistics of this vector for 

processing. By using the nonlocal redundancy, we adaptively compute the optimal transformation 

domain in which the given patch is de-correlated, and then apply soft thresholding in the 

transformation domain for filtering. The experimental results in Section 3 clearly demonstrate that the 

proposed LDI and nonlocal adaptive thresholding (NAT) based method outperforms most of the 

existing CDM methods, including the recently developed NLM based SSD algorithm. Compared with 

NLM filtering, NAT works on the structural level instead of the pixel level. Therefore, it preserves 

sharp edges much better and removes more color artifacts than NLM.  

The rest of the paper is organized as follows. Section 2 describes in detail the proposed LDI-NAT 

scheme for CDM. Section 3 presents the experimental results. Section 4 concludes the paper. 

 

2. The Proposed Color Demosaicking Algorithm 

2.1. Strategy and Flowchart 

 

 

Figure 1: Flowchart of the proposed color demosaicking (CDM) method. 

 
 

Fig. 1 illustrates the flowchart of the proposed CDM algorithm. First, an initial interpolation is applied 

to the green (G) channel by local directional interpolation (LDI) and fusion. Second, the nonlocal 

adaptive thresholding (NAT) is applied to enhance the interpolated G channel. In the third step, the 
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red (R) and blue (B) channels are initially interpolated by the help of the reconstructed G channel. 

Finally, NAT is applied to the R and B channels so that the whole CDM is completed. 

One key issue in the initial CDM is the use of local and directional information. In high saturation 

areas of natural images, the change of colors is abrupt. Therefore, if we use too many local neighbors 

to estimate the missing color samples, unexpected errors can be introduced and they can be hard to 

remove in the stage of nonlocal enhancement. On the other hand, the preservation of edges is crucial 

to the visual quality of reconstructed color images. Since edges usually have one or more dominant 

directions, the interpolation should be along, instead of across, the edge main directions.  

 

           
(a)                      (b) 

 
(c) 

 
Figure 2: (a) A cropped and zoomed full color patch; (b) the green and red color difference image of (a); 
(c) the color difference signals along horizontal (dh), vertical (dv), 450 diagonal (d45), and 1350 diagonal 
(d135) directions at the center of color difference image (b).   

 

With the above considerations, we propose an LDI scheme for initial CDM (the detailed 

description of LDI is in Section 2.2). Let’s use an example to explain why the strategy of LDI is 

adopted for initial CDM. Figure 2a shows a small patch where there are sharp color transitions (from 

red to white) in it. Figure 2b shows the green and red color difference image (i.e. G-R) of Figure 2a. 

In Figure 2c, we plot the color difference signals (with the origin being the center of the patch) along 
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four directions: horizontal (dh), vertical (dv), 450 diagonal (d45) and 1350 diagonal (d135). Some 

observations can be made from this example.  

First, the assumption of smooth color difference used in many CDM methods is invalid. 

Particularly, from Figure 2c we see that the color differences outside the two-pixel-wide 

neighborhood are very different from the center one. Therefore, using a big local window (e.g., bigger 

than 5×5) to estimate the missing color samples can result in unexpected errors. In other words, a 

compact local window should be used in the initial CDM of high saturation areas. Second, the color 

edge direction information is very useful for color interpolation. From Figure 2c we see that the color 

difference along the 1350 diagonal direction is much smoother than other directions, and hence it 

should contribute more to the color estimation. Due to the color down-sampling in the mosaic CFA 

pattern, the color difference signal G-R along diagonal directions cannot be directly calculated. In 

practice, they are estimated as the weighted average of color differences in other directions.  

 

2.2. Local Directional Interpolation of Green Channel 

In various CFA patterns, such as the Bayer pattern [1], the sampling frequency of G is higher than that 

of R and B channels. Therefore, the G channel preserves much more image structural information 

than the other two color channels. Usually, a better reconstruction of G will lead to a better 

reconstruction of R and B. As shown in Fig. 1, we will initially interpolate the G channel by using 

local redundancy, and then enhance it by using nonlocal redundancy.  

The well-known SOLC algorithm [3, 4] is actually a directional interpolation method. In SOLC, 

at each R or B position two filtering outputs of G are computed along horizontal and vertical 

directions respectively, and then one of them is selected based on the gradients in the two directions. 

However, SOLC has two problems. First, it considers only two directions in the interpolation. This 

limits its capability in preserving edge structures along other directions. Second, SOLC simply selects 

one of the two directions for interpolation, but this will lose much useful information in the local area, 

resulting in many interpolation errors. In this section, we propose to fuse the directional information 

for more robust color interpolation. 



 

   

7

 R21 G14 R10 G15 R22

B27 G13 B5 G2 B6 G16

G26 R9 G1 R0 G3 R11

B25 G20 B8 G4 B7 G17

 R24 G19 R12 G18 R23

 
Figure 3: A CFA block.  

 

Since there can be sharp color transitions in highly saturated regions, we use a compact local 

window for the initial interpolation. Refer to Fig. 3, considering a CFA block and let’s focus on the 

red pixel R0, where the green color is to be estimated. (The missing green colors on blue pixels can be 

similarly interpolated.) Intuitively, if we could know the color difference between G and R at position 

R0, denoted by dgr = G0- R0, the missing green sample can then be recovered as G0= R0+ dgr. Therefore, 

how to estimate the color difference dgr is a key in the interpolation of G.  

We compute the color difference along four directions: north (n), south (s), west (w) and east (e). 

Refer to Fig. 3, the four directional estimates, 
n
grd , s

grd , w
grd  and e

grd , are calculated as follows:  

( )
( )
( )
( )

2 0 10

4 0 12

1 0 9

3 0 11

/ 2
/ 2
/ 2
/ 2

n
gr
s
gr
w
gr
e
gr

d G R R
d G R R
d G R R
d G R R

⎧ = − +
⎪ = − +⎪
⎨ = − +⎪
⎪ = − +⎩

                           (2-1) 

The interpolation error of the four directional estimates relates to the edge direction and color 

transition at R0. In order to evaluate which estimate is better, we calculate the gradients at R0 along the 

four directions. There are many forms to define the directional gradients at R0. We have the following 

considerations. First, the gradient should be calculated using the pixels from the same channel; second, 

to make the calculation of gradients more stable, we could involve neighboring columns/rows of the 

central column/row in calculation; third, the central column/row should have higher contribution to 

the gradient than the neighboring columns/rows. Based on the above three considerations, we use the 

following formula to calculate the gradients along north, south, west and east directions:  
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1 1
2 4 0 10 1 14 3 152 2

1 1
2 4 0 12 1 19 3 182 2

1 1
1 3 0 9 2 13 4 202 2

1 1
1 3 0 11 2 16 4 172 2

n

s

w

e

G G R R G G G G
G G R R G G G G
G G R R G G G G
G G R R G G G G

ε
ε
ε
ε

⎧∇ = − + − + − + − +
⎪∇ = − + − + − + − +⎪
⎨∇ = − + − + − + − +⎪
⎪∇ = − + − + − + − +⎩   

            (2-2) 

where ε is a small positive number to avoid the gradient being zero.  

In general, a bigger gradient along a direction means more variations in that direction and hence it 

is more difficult to accurately estimate the color difference, vice versa. Therefore, we can use the 

gradients as indices to weight the four estimates into a final estimate. An optimal weighting scheme 

needs to know the joint distribution of the gradient and the color difference. However, such 

information is unknown in advance or hard to estimate online. In this paper, we simply let the weight 

assigned to a directional estimate be inversely proportional to the gradient along that direction: 

1 1 1 1
n s w e

n s w e

w ,w ,w ,w= = = =
∇ ∇ ∇ ∇

                     (2-3) 

We then normalize the four weights to make the sum of them be 1. There is  

n s w e
n s w e

w w w ww ,w ,w ,w
C C C C

= = = =                      (2-4) 

where n s w eC w w w w= + + + . The four directional estimates are then fused into one estimation: 

ˆ n s w e
gr n gr s gr w gr e grd w d w d w d w d= + + +                       (2-5) 

Finally, the missing green component at R0 can be estimated as  

0 0
ˆˆ

grG R d= +                                 (2-6) 

By applying the above procedures to all the R and B positions, we can reconstruct the G channel. 

 

2.3. Nonlocal Enhancement of G Channel 

By using the method described in Section 2.2, an initial estimate of each missing green sample can be 

obtained. Since only the local redundancy in a compact local window is exploited, the interpolation 

may not be accurate, especially around object boundaries where sharp color or intensity changes will 

occur. Fortunately, in natural images there are many similar patterns or structures, while a similar 
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structure to the given one may appear far from it. Such nonlocal redundancy can be exploited to 

enhance the CDM results. The nonlocal means (NLM) technique has been extensively studied and 

effectively used in image/video denoising and restoration [21-26], and recently it has also been 

successfully used in CDM [15]. In this section, we use the nonlocal redundancy to reduce the initial 

interpolation errors and enhance the color reproduction quality of G channel. 

 

A. Nonlocal enhancement by NLM filtering 

One straightforward way for the nonlocal enhancement of G channel is to apply NLM filtering to the 

interpolated green sample 0Ĝ , as in many NLM based denoising works [21-25]. To this end, we 

search for similar pixels (can be either original green samples or interpolated green samples) to the 

given 0Ĝ  in the recovered G image. The searching can be performed in the whole image; however, 

this is computationally prohibitive and is not necessary. In practice, we search for similar pixels to 

0Ĝ  in a large enough window (e.g. a 31×31 window), denoted by Ω, centered on it. The patch based 

method can be used to determine the similarity between 0Ĝ  and other pixels in Ω. Denote by P0 the 

s×s patch centered on 0Ĝ , and by Pi the s×s patch centered on a green pixel Gi in Ω. The l1-norm 

distance between P0 and Pi is computed as 

0 021
1 1

1 ( , ) ( , )
s s

i i i
k l

d k l k l
s = =

= − = −∑∑P P P P
 
                 (2-7) 

In general, the smaller the distance di is, the more similar iG  is to 0Ĝ . Based on di, we select the N 

most similar pixels to 0Ĝ  (including 0Ĝ  itself) for the nonlocal enhancement of 0Ĝ .  

For the convenience of expression, we denote by z0 the given pixel 0Ĝ , by zn, n=1,…,N-1, the 

searched similar pixels to 0Ĝ , and by dn the associated distance of zn. The nonlocal enhancement 

output of 0Ĝ  by NLM filtering, denoted by 0x̂ , is computed as the weighted average of zn: 

1
0 0

ˆ N
n nn

x w z−

=
= ∑                              (2-8) 
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where the weights wn are set as 

exp( ) /n nw d Cσ= −                           (2-9)  

with 
1

0
exp( )N

nn
C d σ−

=
= −∑

 
being the normalization factor to make the sum of wn be 1. In Eq. 

(2-9), parameter σ controls the decay rate of weight wn w.r.t. distance dn. In the literature of image 

denoising, σ is usually preset according to the standard deviation of the noise in the image. In the SSD 

algorithm for CDM [15], a coarse-to-fine strategy was used. The nonlocal average process is iterated 

three times, and the parameter σ is set smaller and smaller in the three iterations.  

  

B. Nonlocal enhancement by NAT 

The NLM filtering based nonlocal enhancement of 0Ĝ  is actually the weighted average of samples z0, 

z1, …, zN-1. Although it can suppress many interpolation errors generated in the initial CDM and lead 

to much better color reproduction than many existing CDM algorithms (refer to Section 3.2 please), it 

may also smooth the edges and some bad color artifacts around object boundaries can still survive. 

Nonetheless, in NLM the local neighboring pixels to 0Ĝ  in the patch P0, which all together form the 

local pattern (i.e. structure) on 0Ĝ , are only used to determine the weights wn for averaging. Actually 

P0 and the similar patches Pi to it also specify the variations of the local pattern on 0Ĝ . This 

information is not efficiently exploited in NLM weighting. To more effectively exploit the nonlocal 

redundancy, we propose a nonlocal adaptive thresholding (NAT) scheme in this section.  

By viewing the initial CDM error as additive noise, the initial CDM output can be modeled as 

y=x+υ, where x is the true signal to be restored, υ is additive noise, and y is the initial CDM result. 

To robustly estimate the original signal x from the degraded observation y, a regularized solution is 

often desired such that ˆ arg min ( )J=
x

x x  s.t. 2

2
τ− ≤y x , where J(x) is the regularization term and 

τ is a small number. For example, in the total variational (TV) based image restoration [27-29, 31], 

J(x) is the l1-norm of the gradients of x. Recently, the sparsity prior of x has been successfully used 

for image restoration [32-33, 37-40, 14]. By assuming that the signal x can be sparsely coded (i.e. 
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represented) by a dictionary of atoms Ψ, i.e., x≈Ψα and most of the coefficients in α are small, the 

sparsity based estimation of x from y can be obtained via l1-norm minimization: 

1
ˆ arg min=

α
α α  s.t. 

2
ε− ≤y Ψα                       (2-10) 

The above l1-norm minimization problem can be solved by standard convex optimization techniques 

[41] or by the iterative shrinkage methods [40]. The sparse representation modeling has led to many 

interesting results in image processing, such as compressive sensing [34-36] ad denoising [37, 39].   

In our problem of the nonlocal enhancement of 0Ĝ , we denote by y0=[y0, y1,…, yM-1]T, where 

M=s2. The column vector y0 contains the samples in the s×s patch P0 centered on 0Ĝ , and it can be 

viewed as the observation of the unknown true signal x0=[x0, x1,…, xM-1]T. Then we have y0= x0+υ0, 

where υ0 represents the initial CDM error. Once a good estimation of x0, denoted by 0x̂ , can be made 

from y0, the nonlocal enhancement of 0Ĝ , denoted by 0x̂ , can be readily extracted from 0x̂ . Since 

the elements in patch P0 are highly correlated, it can be assumed that signal x0 is sparse in some 

domain Ψ, i.e., x0≈Ψα0 and α0 is a sparse coefficient vector. The enhancement of 0Ĝ  can be 

modeled as  

0

0 0 1
ˆ arg min=

α
α α  s.t. 0 0 2

τ− ≤y Ψα                    (2-11) 

Once 0α̂  is optimized, the estimated signal can be obtained as 0x̂ =Ψ⋅ 0α̂ .  

Now the question is how to determine the sparse domain Ψ in Eq. (2-11) to solve 0α̂ . Although 

the wavelet bases or the Fourier bases are often used, these analytically designed bases cannot 

effectively characterize the so many different local patterns across the image. The dictionary learning 

[37-38] methods have been recently proposed to learn an over-complete dictionary of bases from a 

training dataset to span the sparse domain. Nonetheless, for a given signal y0, many atoms in the 

learned over-complete dictionary will be irrelevant, while the l1-norm minimization needs much 

computational cost. With these considerations, in this paper we propose the NAT scheme to solve Eq. 

(2-11) with nonlocal redundancy.    
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Recall that after the nonlocal similar pixels searching to 0Ĝ , we obtain N-1 similar patches to P0. 

The vector y0 is formed by stretching P0, and similarly we can form another N-1 column vectors by 

stretching Pi, i=1,2,…,N-1. Denote by y0=[y0,0, y0,1,…, y0,M-1]T the vector formed by P0, and by yi=[yi,0, 

yi,1,…, yi,M-1]T the vectors formed by other patches. Then an M×N data matrix Y can be established by 

Y=[y0, y1, …, yN-1]. Each row of Y is then centralized by subtracting its mean value. For the 

convenience of expression, we still use symbol Y in the following development.  

Since yi = xi+υi, where xi is the unknown true signal and υi is the initial CDM error, we have 

Y=X+V, where X=[x0, x1, …, xN-1] and V=[υ0, υ1, …, υN-1]. A good domain Ψ for X should be a 

domain where the vectors xi could be sparsely coded; that is, X≈ΨΛ and Λ is a sparse matrix. Since 

only the observation of X, i.e. Y, is available, we set the objective function to determine Ψ as: 

1
,

arg min
ΛΨ

Λ  s.t. 
F

τ− ≤Y ΨΛ                        (2-12) 

where ||·||F is the Frobenius norm .  

 Eq. (2-12) is a joint optimization problem of Λ and Ψ, which can be solved by optimizing Λ and 

Ψ alternatively. Considering that the average power of CDM error V is not seriously high (but the 

resulting color artifacts can be visually very unpleasing), here we propose an efficient solution to Eq. 

(2-12). By using singular value decomposition (SVD), we can factorize Y as Y=ΦΓ, where Φ is an 

orthonormal matrix spanned by the eigenvectors of the covariance matrix of Y (i.e. YYT), and Γ =ΦTY 

is the projection of Y over ΦT. We let the desired dictionary Ψ=Φ. If we also let Λ=Γ, then the 

constraint 0
F F

τ− = − = ≤Y ΨΛ Y ΦΓ  is perfectly satisfied but |Λ|1 will have a certain amount so 

that 
1

arg min
Λ

Λ  is not optimized. Thus Γ needs to be further processed for a better solution to Λ.  

With Y=X+V, we have Γ =ΦTY =ΦTX +ΦTV=ΓX +ΓV, where ΓX=ΦTX and ΓV=ΦTV. ΦT will 

de-correlate true signal X, and many coefficients in ΓX will be small, while there are a few significant 

coefficients in ΓX and they are mainly the projection coefficients of X on the eigenvectors associated 

with the most significant eigenvalues of YYT. The CDM errors V are very like random noise, and thus 
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the energy of ΓV will be evenly spread over the domain spanned by ΦT. Therefore, we could apply a 

soft threshold t to Γ to remove ΓV from Γ so that the desired Λ can be obtained as follows:     

 ( )( ( , )) ( , ) ( , )
( , )

0 ( , )

sign i j i j t if i j t
i j

if i j t

⎧ ⋅ − >⎪= ⎨
≤⎪⎩

Γ Γ Γ
Λ

Γ
                (2-13) 

Actually soft-thresholding is widely used to solve the l1-norm minimization problems [30-31, 40]. 

With Eq.(2-13), the term |Λ|1 is much reduced while the term 
F

−Y ΨΛ  can be still controlled 

within a small range τ, and finally a good solution to Eq.(2-12) is obtained. 

The selection of threshold t depends on the CDM error level in V. In practice, we can estimate t as 

follows. The CDM accuracy of a local area is closely related to its local smoothness. If the local area 

is smooth, usually the CDM error will be low, and vice versa. Therefore, we empirically estimate the 

CDM error level based on the local intensity variation. We calculate the average gradient magnitude 

of all patches in Y and denoted it by gY, and then we let t=c⋅ gY, where c is a constant. By experience, 

we set c=0.03 in the experiments.  

Once the solution to Λ in Eq. (2-12) is obtained, the desired solution 0α̂  in Eq.( 2-11) is obtained 

by extracting it from Λ. The nonlocal enhancement result of 0Ĝ  is 0x̂ =Ψ⋅ 0α̂ . From the above 

description, we can see that NLM applies nonlocal enhancement to 0Ĝ  by weighted averaging, while 

NAT applies nonlocal enhancement to the local patch centered on 0Ĝ . In other words, NAT lifts 

NLM from the pixel level to the structure level. Consequently, NAT can reconstruct much better the 

image edges than NLM, as we will see in the experimental results in Section 3.   

 

2.4. Initial Interpolation of R and B Channels 

With the non-locally enhanced G channel, we first compute the initial estimates of R and B channels 

by exploiting the local spatial-spectral correlation, and then enhance them by nonlocal redundancy. 

Since the interpolations of R and B channels are symmetric, in the following we only discuss the 

reconstruction of B. 
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We interpolate the missing B samples by using a two-step strategy. First we interpolate the B 

samples at the R positions, and then with these interpolated B samples, all the other B samples at the 

G positions can be interpolated. Refer to Fig. 3, suppose we are to interpolate the missing sample B0 

at R0. Note that all the G samples have been recovered and are available now, and we can estimate the 

color differences between B and G along the four diagonal directions at R0 as: 

  

5 5

6 6

7 7

8 8

nw
bg
ne
bg
se
bg
sw
bg

d B G
d B G
d B G
d B G

⎧ = −
⎪ = −⎪
⎨ = −⎪
⎪ = −⎩

                             (2-14) 

where the superscripts “nw”, “ne”, “se” and “sw” represent the north-western, north-east, south-east 

and south-western directions, respectively.  

The four directional estimates are weighted for a more robust estimate. To determine the weights, 

the gradients along the four directions are calculated as follows: 

5 7 21 0 5 0

6 8 22 0 6 0

5 7 23 0 7 0

6 8 20 0 8 0

nw

ne

se

sw

B B R R G G
B B R R G G
B B R R G G
B B R R G G

ε
ε
ε
ε

⎧∇ = − + − + − +
⎪∇ = − + − + − +⎪
⎨∇ = − + − + − +⎪
⎪∇ = − + − + − +⎩

                  (2-15) 

where ε is a small positive number. Like in Eq. (2-3) and Eq. (2-4), the four weights are set as 

1 1 1 1
nw ne se sw

nw ne se sw

w ,w ,w ,w
C C C C

= = = =
⋅∇ ⋅∇ ⋅∇ ⋅∇

             (2-16) 

where 
1 1 1 1

nw ne se sw

C = + + +
∇ ∇ ∇ ∇

. Then the final blue and green color difference at position R0 is 

estimated by ˆ nw ne se sw
bg nw bg ne bg se bg sw bgd w d w d w d w d= + + + , and the missing blue component at R0 is 

estimated as 0 0
ˆˆ

bgB G d= + .  

Once the B samples at the R positions are interpolated as described above, we can consequently 

interpolate the B samples at all the other G positions. Take the position G1 in Fig. 3 as an example. 

Note that the blue samples at R9 and R0 have been interpolated, and we denote them as 9B̂  and 0B̂ . 

The directional estimates of the blue and green color difference at G1 are computed as 
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5 5

8 8

9 9

0 0

ˆ

ˆ

n
bg
s
bg

w
bg

e
bg

d B G
d B G

d B G

d B G

⎧ = −
⎪ = −⎪
⎨ = −⎪
⎪ = −⎩

                              (2-17) 

The gradients at position G1 along the four directions are calculated as:  

1 1
14 1 5 8 21 9 10 02 2

1 1
19 1 5 8 20 9 12 02 2

1 1
1 26 0 9 27 5 25 82 2

1 1
1 3 0 9 5 6 8 72 2

n

s

w

e

G G B B R R R R
G G B B R R R R
G G R R B B B B
G G R R B B B B

ε
ε
ε

ε

⎧∇ = − + − + − + − +
⎪∇ = − + − + − + − +⎪
⎨∇ = − + − + − + − +⎪
⎪∇ = − + − + − + − +⎩

            (2-18) 

The associated four weights for the four directions are computed in the same way as in Eq. (2-3) and 

Eq. (2-4), and the fused color difference is obtained as ˆ n s w e
bg n bg s bg w bg e bgd w d w d w d w d= + + + . Finally, 

the missing B sample at position G1 is interpolated by 1 1
ˆˆ

bgB G d= + .  

 

2.5. Nonlocal Enhancement of R and B Channels 

Once the R and B channels are interpolated with the help of nonlocally enhanced G channel, they can 

then be enhanced by exploiting nonlocal redundancies in R and B channels respectively. The process 

is the same as that for the G channel. For each interpolated red (blue) sample 0R̂  ( 0B̂ ), we search for 

similar pixels to it in a large window centered on it. The N most similar pixels to 0R̂  ( 0B̂ ), including 

itself, are used to enhance it via NLM or NAT.    

 

3. Experimental Results 

3.1. The McMaster Dataset 

The Kodak image dataset [2] is widely used as a standard dataset in CDM and many other color image 

processing fields. The Kodak dataset contains 24 full color images, whose spatial size is 768×512. It 

is said that these images were originally captured by film and then digitized by scanner. However, in 

recent years it has been noticed that the statistics of Kodak images are very different from other 

natural images [15, 16, 20], e.g., the images in the McMaster dataset to be introduced. The images in 
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Kodak dataset look smooth and less saturated, which makes them less representative for the digital 

color images captured by the current digital cameras and hence less representative for applications 

such as CDM. Specifically, the Kodak images have very high spectral correlation, are smooth in 

chromatic gradient and have low saturation (refer to Table 1 please). It is doubted that these images 

were post-processed, and they are not suitable for evaluating CDM algorithms. 

 
Table 1: Statistics of the Kodak and the McMaster datasets. 

Datasets Kodak McMaster 

Mean Spectral 
Correlation 

G and R 0.8712 0.7445 

G and B 0.9050 0.7114 

Mean Saturation  15.6 45.81 

Mean Chromatic Gradient 1.78 4.54 

 
 
 

In this study, we use a new color image dataset, namely the McMaster dataset, for the evaluation 

of CDM algorithms. This dataset was established in a project of developing new CDM methods by 

McMaster University, Canada, in collaboration with some industry partners. It has 8 high resolution 

(size: 2310×1814) color images that were originally captured by Kodak film and then digitized. The 

scenes of the 8 images are shown in Fig. 4. Since these images have a big size, we crop 18 sub-images 

(size: 500×500) from them to evaluate the CDM methods. Fig. 5 shows the cropped 18 sub-images. In 

Table 1 we compare the mean spectral correlation, mean chromatic gradient and mean saturation2 of 

the images in the two datasets. We see that the spectral correlation of the Kodak images is obviously 

higher than that of the McMaster dataset. The McMaster images are more saturated and there are 

many sharp structures with abrupt color transitions in them. Many CDM methods use the Kodak 

dataset as the target images in algorithm development and testing, and they assume that the color 

differences change smoothly. Though this assumption holds well for the Kodak dataset, we can see 

                                                           
2 The mean saturation is computed as follows. For each pixel with color components {r,g,b}, its saturation is 

computed as ( ) ( ) ( )( )2 2 2 3s r y g y b y /= − + − + − , where y=(r+g+b)/3. The mean saturation is obtained by 

averaging the saturation of all pixels. The mean chromatic gradient is computed as follows. We first convert 
the image into the YUV space. The chromatic gradient of each pixel is set as the modulus of the gradient in 
the U and V channels. Then the mean chromatic gradient is the obtained by averaging over the whole image. 
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from Table 1 that it may not hold for the images in the McMaster dataset. The cropped 18 sub-images 

and the source code of the proposed LDI-NLM and LDI-NAT algorithms can be downloaded at 

http://www.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm. 

 

 

  
 

Figure 4: Scenes of the eight test images in McMaster dataset. 

 

 

 

 

 
 

Figure 5: Cropped McMaster sub-images (500×500) used in the experiments. From top to bottom and left 
to right, these sub-images are labeled as 1 to 18. 
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3.2. CDM Results 

We evaluate the performance of various CDM schemes on the McMaster dataset. We denote by 

“LDI-NLM” the proposed LDI and NLM based CDM method, and by “LDI-NAT” the LDI and NAT 

based CDM method. The following representative CDM methods are used for comparison: the second 

order Laplacian correction (SOLC) method [3-4]; the adaptive homogeneity-directed (AHD) method 

[10], the successive approximation (SA) method [9], the directional linear minimum mean 

square-error estimation (DLMMSE) method [12], and the self-similarity driven (SSD) method [15]. 

Considering that the SSD, LDI-NLM and LDI-NAT algorithms all exploit the nonlocal redundancy, 

in Table 2 we summarize the procedures of the three algorithms for a better understanding of the 

common points and differences between them. These nonlocal methods involve a step of similar patch 

searching, which is one of the main sources of computational cost. Therefore, SSD, LDI-NLM and 

LDI-NAT have higher complexity than the local methods SOLC, AHD, SA and DLMMSE.  

Suppose that the same nonlocal similar patch searching algorithm is used for SSD, LDI-NLM and 

LDI-NAT, then LDI-NLM has similar complexity to SSD because both of them use weighted average 

to exploit the nonlocal redundancy. However, LDI-NAT has higher complexity than SSD because it 

uses PCA to exploit the nonlocal redundancy. The data matrix Y formed by nonlocal similar patches is 

of size M×N, and the covariance matrix of it is of size M×M. In the PCA transformation, the SVD of 

the covariance matrix is required and the complexity is O(M3), which is much higher than that of 

weighted average. Hence, the proposed LDI-NAT has the highest complexity among the competing 

methods, while LDI-NLM and SSD have similar complexity.  

In our implementation of LDI-NLM, 25 similar patches to the given patch (patch size: 5×5) are 

searched in a 31×31 local window. (Please note that based on our experiments, using more similar 

patches in NLM filtering will not improve the final CDM performance.) The parameter σ (refer to Eq. 

(2-9)) in the NLM filtering is set as 2.5. In our implementation of LDI-NAT, 100 similar patches to 

the given patch (patch size: 5×5) are searched in a 31×31 window. The threshold used in Eq. (2-13) is 

set as t=0.03×gY, where gY is the average gradient magnitude of the similar patches. 
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Table 2: Summary of the SSD, LDI-NLM and LDI-NAT algorithms. 

Methods SSD LDI-NLM LDI-NAT 
Pr

oc
ed

ur
es

 
1. The full color image is initially 

interpolated by bilinear 
interpolator. Denote it by u0. 

2. For σ ={16,4,1} 
2a. Apply non-local means 

filtering to u0 with scale 
parameter σ. 

2b. Convert u0 into YUV color 
space and apply chromatic 
regularization to U and V 
channels. Transform the 
regularized image back to 
RGB color space, and denote 
it by u.  

2c. Let u0= u. 
End 

1. The G channel is 
initially recovered by 
LDI. 

2. The G channel is 
non-locally enhanced 
by NLM filtering. 

3. The R or B channel is 
initially recovered by 
LDI with the 
non-locally recovered 
G. 

4. The R or B channel is 
non-locally enhanced 
by NLM filtering. 

1. The G channel is initially 
recovered by LDI. 

2. The G channel is 
non-locally enhanced by 
NAT with soft- 
thresholding. 

3. The R or B channel is 
initially recovered by 
LDI with the non-locally 
recovered G. 

4. The R or B channel is 
non-locally enhanced by 
NAT with soft- 
thresholding. 

Th
e 

w
ay

 to
 u

se
 n

on
lo

ca
l 

in
fo

rm
at

io
n 

1. A coarse-to-fine strategy is used 
to exploit the non-local 
redundancy iteratively. In each 
iteration, the similar pixels to the 
given one are weighted as the 
updated estimation.  

2. In each iteration, the RGB color 
space is transformed into the 
YUV space for chromatic 
regularization.  

1. The R, G and B 
channels are enhanced 
separately.  

2. The similar pixels to 
the given one are 
weighted, while the 
weights are determined 
based on the distances 
between similar 
patches.  

1. The R, G and B channels 
are enhanced separately. 

2. The pixels in the given 
patch are taken as a 
vector signal, which is 
soft-thresholded in an 
adaptively computed 
sparse domain based on 
the statistics of similar 
patches.  

 

In the experiments, we down-sampled the original color images into CFA images according to the 

Bayer pattern, and then reconstructed the full color images from the CFA mosaic data by using the 

seven methods. Table 3 lists the PSNR results. We see that the proposed LDI-NLM and LDI-NAT 

algorithms achieve much higher PSNR measures than other competing algorithms in almost every 

channel of all the test images. Although the classical SOLC is simple, it achieves almost the same 

PSNR results as the recently developed SSD scheme, while SOLC and SSD outperform the other 

three methods in the competition. The DLMMSE has similar PSNR results to SOLC and SSD, and the 

AHD and SA algorithms have the lowest PSNR measures. Fig. 6 presents graphically the average 

PSNR results by various methods on the McMaster dataset.   

It is well-known that PSNR is not a good indicator of CDM quality because the CDM errors 

mainly occur around the (color) edges, which account only a small portion of the image pixels. In [15], 

the Zipper Effect Ratio (ZER) was used to evaluate the color edge preservation performance of CDM. 

Although this metric cannot perfectly reflect the CDM quality, it works better than PSNR in 
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evaluating the CDM performance. Table 4 shows the ZER measures of the seven competing methods. 

Fig. 7 presents graphically the average ZER results by various methods on the McMaster dataset. We 

see that LDI-NLM, SSD and LDI-NAT achieve much lower ZER values than other methods. 

Although SOLC and DLMMSE have similar PSNR results to SSD, their ZER measures are much 

worse than SSD. This also validates that PSNR is not a good metric to measure image edge 

preservation. Note that LDI-NLM has lower ZER values than LDI-NAT. However, LDI-NAT 

actually has much better edge preservation than LDI-NLM. This is because LDI-NLM results in 

smooth color edges, while the ZER metric favors smooth images. Nonetheless, how to define a good 

CDM quality metric is a very difficult problem and this is beyond the discussion of this paper.   

Figs. 8 to 11 show the cropped and zoomed CDM results of the seven methods on images 1, 5, 6 

and 16. It can be clearly seen that the proposed two algorithms, especially LDI-NAT, yield much 

better CDM outputs than the other five methods. The methods SA, AHD and DLMMSE produce 

many zipper effects and false colors because they assume smooth color differences but this 

assumption does not hold well on the McMaster dataset. The SOLC uses a compact (five-tap) filter to 

interpolate the missing colors, which makes it free of many interpolation errors caused by abrupt color 

changes. However, SOLC neither fully exploits the local redundancy nor uses any nonlocal 

redundancy for CDM. The SSD exploits the nonlocal redundancy to iteratively recover the color 

information but it is not effective in using the image local directional information. As a result, both 

SOLC and SSD still produce many visible color artifacts, which can be clearly observed in Figs. 8 to 

11. The proposed LDI-NLM and LDI-NAT exploit effectively the image local redundancy and edge 

direction information in the initial interpolation, and exploit the non-local similarity to enhance the 

CDM output. They reduce significantly the CDM errors and artifacts, recovering more faithfully the 

missing color samples than SOLC and SSD. Their higher PSNR and lower ZER measures in Tables 3 

and 4 also validate their powerful capability in color reproduction. 

At last, let’s compare the performance of LDI-NLM and LDI-NAT. As summarized in Table 2, 

LDI-NLM exploits the nonlocal redundancy by NLM filtering. NLM filtering is powerful in 

smoothing the initial CDM noise; however, it may also smooth the edges. In addition, for strong 
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zippers and color artifacts caused by sharp color transition in highly saturated areas, NLM filtering is 

not effective to remove them. Different from NLM filtering, LDI-NAT processes the patch centered 

on the given pixel as a whole to better preserve the local pattern. The nonlocal redundancy is used to 

compute the sparse domain, and adaptive soft-thresholding is used to remove the initial CDM errors. 

Compared with NLM filtering, the NAT exploits the structural statistics in the similar patches, and 

hence it can more effectively preserve the edges and reduce the zipper effects and false colors. From 

Table 3, we see that for images with more smooth areas (e.g. images 8, 9, 13 and 18), the overall 

PSNR measures of LDI-NLM can be higher than LDI-NAT. Nonetheless, in the smooth areas both 

the two methods can have good visual quality. In areas with high color variations, LDI-NAT leads to 

much better CDM outputs. This can be more clearly seen in the images with more color edges, e.g. 

images 1, 5, 6, and 16.  

 
 
4. Conclusion 

This paper presented a powerful color demosaicking (CDM) scheme by exploiting effectively both the 

local spectral correlation and the non-local similarity in the color filter array (CFA) image. Many 

previous CDM methods assume the high local spectral redundancy in the color interpolation. Such an 

assumption, however, fails for images with sharp color transitions and high color saturation. 

Fortunately, the nonlocal redundancy can be used to compensate for the lack of local redundancy in 

CDM. We first computed four directional local estimates of a missing color component, and fused 

them into one estimate based on the local directional gradients. After the local directional 

interpolation (LDI), the nonlocal similar pixels to the given one were searched to enhance the initial 

CDM results. Apart from the commonly used nonlocal means (NLM) filtering technique, a nonlocal 

adaptive thresholding (NAT) scheme was proposed to better preserve the local structure while 

reducing the initial CDM errors. The proposed LDI-NAT algorithm was tested on the McMaster 

dataset in comparison with state-of-the-art CDM methods. The experimental results showed that 

LDI-NAT leads to visually much better demosaicked images, reducing significantly the unpleasing 

zipper effects and false colors that often appear in highly saturated areas. 
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Table 3: PSNR (dB) results by different CDM methods on the McMaster dataset. 

 
Methods SOLC [3] AHD [10] SA [9] DLMMSE [12] SSD [15] LDI-NLM LDI-NAT 

1 
R 28.26 26.02 23.53 26.94 27.28 28.81 29.29 
G 31.22 29.82 25.17 30.63 30.68 32.31 32.67 
B 26.34 24.04 22.05 24.82 25.12 26.47 26.71 

2 
R 33.68 32.47 31.63 33.30 33.61 34.66 35.02 
G 37.62 37.20 34.00 37.66 37.81 39.01 39.08 
B 32.11 31.26 30.74 31.86 32.01 32.79 32.92 

3 
R 30.64 31.10 31.47 32.60 32.81 33.41 33.05 
G 33.73 33.49 32.75 35.28 35.05 35.50 35.51 
B 28.60 29.67 29.80 30.70 30.93 30.99 30.31 

4 
R 32.80 33.76 34.59 34.70 36.36 37.41 36.25 
G 37.16 35.66 34.05 36.99 38.98 39.01 40.33 
B 30.89 31.48 32.19 32.07 33.49 34.02 33.30 

5 
R 33.61 29.52 28.60 30.38 31.10 34.50 35.05 
G 36.28 34.73 30.97 35.11 35.43 37.67 38.15 
B 30.47 28.78 28.08 29.41 29.48 31.02 31.16 

6 
R 37.14 33.92 32.23 34.98 36.09 38.59 39.40 
G 40.30 37.72 32.50 38.61 38.85 41.70 43.42 
B 34.00 29.96 29.14 31.15 31.72 34.21 34.97 
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7 
R 33.85 35.64 37.03 38.30 36.61 36.28 36.09 
G 36.34 37.36 40.39 40.70 37.62 37.66 37.41 
B 32.45 35.07 36.22 37.29 36.38 34.59 34.49 

8 
R 34.87 34.15 35.31 35.45 35.31 36.89 36.31 
G 39.09 39.45 38.49 41.43 40.34 40.44 40.29 
B 35.04 35.79 35.82 36.99 36.76 36.84 36.67 

9 
R 34.36 31.54 30.71 32.39 33.72 35.54 35.49 
G 39.62 37.99 33.83 38.73 39.52 41.56 41.73 
B 35.34 34.00 32.54 34.66 35.38 36.54 36.30 

10 
R 36.86 33.99 34.03 34.70 36.33 37.64 38.26 
G 40.86 39.17 36.15 40.00 40.23 42.19 42.64 
B 36.08 34.88 34.78 35.55 36.13 36.51 36.83 

11 
R 38.12 36.13 36.16 36.91 38.16 39.25 39.82 
G 40.78 39.34 37.11 40.44 40.19 41.66 42.57 
B 37.19 34.73 34.33 35.75 36.81 37.50 37.66 

12 
R 37.13 33.60 34.49 34.74 35.37 37.62 38.36 
G 40.17 40.09 37.66 39.59 39.70 41.45 41.49 
B 35.70 36.24 36.24 36.47 37.11 37.51 37.59 

13 
R 39.80 37.91 38.11 38.66 40.01 42.23 41.77 
G 43.46 42.16 39.90 42.57 43.82 45.55 44.89 
B 37.65 36.20 36.51 36.75 37.19 37.88 38.13 

14 
R 37.85 37.33 36.82 37.74 38.66 39.28 39.39 
G 41.37 40.65 38.79 41.13 41.93 42.62 42.84 
B 35.64 34.30 34.45 34.78 35.00 35.82 36.12 

15 
R 36.44 34.88 34.87 35.32 36.23 37.34 36.95 
G 41.20 40.27 38.13 40.71 40.75 42.39 42.68 
B 38.17 36.84 36.52 37.30 37.90 38.49 38.99 

16 
R 32.75 30.95 28.75 31.95 32.21 34.18 34.97 
G 34.09 32.36 28.60 33.22 32.99 35.00 35.59 
B 31.63 26.85 24.87 28.06 28.30 31.12 31.53 

17 
R 31.24 27.12 25.35 28.32 29.24 31.60 32.14 
G 35.17 32.13 26.68 33.31 33.62 37.31 37.62 
B 30.69 26.65 25.06 27.77 28.38 30.78 30.91 

18 
R 32.69 32.30 31.61 33.32 33.24 34.63 34.58 
G 36.20 35.69 33.84 37.02 35.91 37.30 37.27 
B 33.43 31.90 31.11 32.93 33.44 34.87 34.30 

Average 
R 34.71 33.05 32.68 34.06 34.71 36.10 36.23 
G 38.11 37.10 34.63 38.10 38.08 39.46 39.79 
B 33.41 32.30 31.87 33.15 33.47 34.33 34.38 

 

Table 4: Zipper Effect Ratio (ZER) by different CDM methods on the McMaster dataset. 
 

Methods SOLC [3] AHD [10] SA [9] DLMMSE [12] SSD [15] LDI-NLM LDI-NAT 
1 0.2059 0.1678 0.4348 0.2021 0.0996 0.0748 0.1082 
2 0.0939 0.1225 0.1673 0.1249 0.0753 0.0486 0.0682 
3 0.1659 0.2336 0.4357 0.2179 0.1044 0.0815 0.1044 
4 0.3475 0.3952 0.7680 0.5287 0.0915 0.0930 0.1468 
5 0.0996 0.1130 0.1831 0.1144 0.0629 0.0477 0.0591 
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6 0.0987 0.1206 0.2121 0.1306 0.0563 0.0477 0.0477 
7 0.1983 0.1945 0.1459 0.1368 0.1163 0.1282 0.1397 
8 0.1249 0.2336 0.1988 0.1344 0.0567 0.0510 0.0686 
9 0.1387 0.2160 0.3585 0.2174 0.0915 0.0524 0.0896 

10 0.1020 0.1464 0.2212 0.1526 0.0739 0.0434 0.0577 
11 0.1425 0.2264 0.3280 0.2260 0.1130 0.0667 0.0801 
12 0.1011 0.1835 0.2102 0.1587 0.0481 0.0243 0.0572 
13 0.1249 0.2040 0.2098 0.1821 0.0577 0.0200 0.0830 
14 0.1135 0.1721 0.2102 0.1649 0.0653 0.0381 0.0682 
15 0.1564 0.1955 0.2975 0.2417 0.0982 0.0610 0.1120 
16 0.1549 0.2150 0.3852 0.2350 0.1554 0.0920 0.1096 
17 0.1788 0.2245 0.3933 0.2584 0.1468 0.1125 0.1254 
18 0.1669 0.1444 0.4329 0.1759 0.0768 0.0567 0.0791 

average 0.1508 0.1949 0.3107 0.2001 0.0883 0.0633 0.0891 
 
 
 

 
 

Figure 6: Graphical presentation of the average PSNR by different methods on the McMaster dataset.  
 
 

 
 

Figure 7: Graphical presentation of the average ZER by different methods on the McMaster dataset.



 

   

26
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(c)                                            (d) 

  
(e)                                            (f) 

  
(g)                                            (h) 

 
Figure 8: (a) Original image 1 and demosaicked images by (b) SOLC [3]; (c) AHD [10]; (d) SA [9]; (e) 
DLMMSE [12]; (f) SSD [15]; (g) the proposed LDI-NLM and (h) LDI-NAT.  
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Figure 9: (a) Original image 5 and demosaicked images by (b) SOLC [3]; (c) AHD [10]; (d) SA [9]; (e) 
DLMMSE [12]; (f) SSD [15]; (g) the proposed LDI-NLM and (h) LDI-NAT.  
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Figure 10: (a) Original image 6 and demosaicked images by (b) SOLC [3]; (c) AHD [10]; (d) SA [9]; (e) 
DLMMSE [12]; (f) SSD [15]; (g) the proposed LDI-NLM and (h) LDI-NAT.  
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Figure 11: (a) Original image 16 and demosaicked images by (b) SOLC [3]; (c) AHD [10]; (d) SA [9]; (e) 
DLMMSE [12]; (f) SSD [15]; (g) the proposed LDI-NLM and (h) LDI-NAT.  


