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Abstract

This paper presents an iterated region merging-based graph cuts algorithm
which is a novel extension of the standard graph cuts algorithm. Graph cuts
addresses segmentation in an optimization framework and finds a globally
optimal solution to a wide class of energy functions. However, the extraction
of objects in a complex background often requires a lot of user interaction.
The proposed algorithm starts from the user labeled sub-graph and works
iteratively to label the surrounding un-segmented regions. In each iteration,
only the local neighboring regions to the labeled regions are involved in the
optimization so that much interference from the far unknown regions can be
significantly reduced. Meanwhile, the data models of the object and back-
ground are updated iteratively based on high confident labeled regions. The
sub-graph requires less user guidance for segmentation and thus better results
can be obtained under the same amount of user interaction. Experiments on
benchmark datasets validated that our method yields much better segmenta-
tion results than the standard graph cuts and the Grabcut methods in either
qualitative or quantitative evaluation.
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1. Introduction

While it has been widely studied for many decades, automatic image
segmentation is still a big challenge due to the complexity of image content. A
lot of work shows that the user guidance can help to define the desired content
to be extracted and thus reduce the ambiguities produced by the automatic
methods. In this paper we consider the most common type of interactive
segmentation: segmenting the object of interest from its background.

In the past few years, various approaches to interactive segmentation
have been proposed. For example, livewire [1] allows the user to interactively
select certain pixels where the segmentation boundary should pass. However,
texture or noise in the image might require a lot of interaction in order
for an acceptable segmentation. To obtain real time response to the user’s
actions, independent of the image size, Falcão [2] proposed a modified livewire
method, which exploits three properties of Dijkstra’s algorithm to compute
minimum-cost paths in sub-linear time. Active contour, or snake [3, 4, 5], is
defined as an energy-minimizing spline. After initializing the contour close to
the original object boundary, the contour will fit the actual object boundary
iteratively. Level sets-based segmentation method [6] uses implicit active
contour models, in which the numerical computation involving curves and
surface is performed without having to parameterize the objects.

Another preferable interactive segmentation method based on combina-
torial optimization is graph cuts [7, 8]. It addresses segmentation in a global
optimization framework and guarantees a globally optimal solution to a wide
class of energy functions. In addition, the user interface of graph cuts is
convenient-seeds can be loosely positioned inside the object and background
regions, which is easier compared to placing seeds exactly on the boundary,
like in livewire [1]. Because graph cuts can involve a wide range of visual cues,
a number of recent literature further extended the original work of Boykov
and Jolly [7] and developed the use of regional cues [9, 12], geometric cues
[13, 14], shape cues [15, 16, 17], stereo cues [12], or even topology priors [18]
as global constraints in the graph cuts framework. When foreground and
background color distributions are not well separated, the traditional graph
cuts [7] cannot achieve satisfying segmentation. Some advanced versions of
graph cuts are developed [9, 10, 11, 19], which are more robust and sub-
stantially simplify the user interaction. In [10], the user interaction can be
applied on both coarse and fine scales, which inherit the advantages in region
and boundary-based methods for image segmentation. The work proposed
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in [11] makes a progressive local selection on the object of interest. Instant
visual feedback is provided to the user for a quick and effective image editing.

In the classical graph-based framework, most of segmentation methods
consider pixels or groups of pixels as the nodes in a graph. The edge weight
estimation usually takes into account image attributes, for example color,
gradient and texture. An efficient edge weight assignment method was pro-
posed by Miranda et al. [20], where the object information obtained from
user interaction as well as the image attributes are both used for estimating
edge weights. Separating from the image segmentation process, it can act
as a basic step for high accuracy image segmentation. Some other works
studied graph structures for designing image processing operators. Image
foresting transform (IFT) [21, 22], for example, defines a minimum-cost path
forest in a graph, and provides a mathematically sound framework for many
image processing operations. Based on similar graphs, a theoretical analysis
between optimum-path forests and minimum cut was given in [23]. Under
some conditions, the two algorithms were proven to produce the same result.

In our preliminary work [19], we explore the graph cuts algorithm by ex-
tending it to a region merging scheme. Starting from seed regions given by the
user, graph cuts is conducted on a propagated sub-graph where the regions
are regarded as the nodes of the graph. An iterated conditional mode (ICM)
is studied and the maximum a posterior (MAP) estimation is obtained by
virtual of graph cuts on each growing sub-graph. The segmentation process
is stopped when all the regions are labeled. In [19], the initial segmentation
is obtained by meanshift algorithm, which is a sophisticated segmentation
technique. While in this paper, the initial segmentation is obtained by the
simple watershed algorithm [24]. In each iteration, a semi-supervised algo-
rithm is applied to learn a classifier. Consequently, the most confident labels
will contribute for new seed regions in the next iteration.

The proposed method is a novel extension of the standard graph cuts
algorithm. Rather than segmenting the entire image all at once, the segmen-
tation is performed incrementally. It has many advantages to do this. First
of all, using sub-graph significantly reduce the complexity of background
content in the image. The many unlabeled background regions in the image
may have unpredictable negative effect on graph cuts optimization. This is
why the global optimum obtained by graph cuts often does not lead to the
most desirable result. However, by using a sub-graph and blocking those un-
known regions far from the labeled regions, the background interference can
be much reduced, and hence better results can be obtained under the same
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amount of user interaction. Second, the algorithm is run on the sub-graph
that comprises object/background regions and the surrounding un-segmented
regions, thus the computational cost is significantly less than running graph
cuts on the whole graph which is based on image pixels. Third, as a graph
cuts based region merging algorithm, our method obtains the optimal seg-
mentation on each sub-graph. In interactive image segmentation, user input
information helps to enhance the discontinuities between object and back-
ground by constructing color data models [9], which represent object and
background respectively. Some simple methods such as color histograms can
be used to calculate these models. In this work, the construction of the object
and the background color models are obtained from the most confident la-
bels by a learned classifier. This scheme automatically collects more reliable
information for the next round of segmentation.

Although the user input is helpful in steering the segmentation process to
reduce the ambiguities, too much interaction will lead to a tedious and time-
consuming work. If the object is in a complex environment from which the
background can not be trivially subtracted, a significant amount of interac-
tion may be required. Moreover, the complex content of an image also makes
it hard to provide user guidance for accurate segmentation while keeping the
interaction as less as possible. Therefore, some algorithms allow further user
edit based on the previous segmentation results [9, 10, 11, 25] until the desired
result is achieved. In comparison to the traditional graph cuts algorithm, the
proposed method is able to reduce the amount of user interaction needed for
a desirable segmentation result, or that given a fixed amount of user inter-
action it increases the quality of the final segmentation result. Experiments
show that with poor initialization (i.e. user inputs), the segmentation results
of standard graph cuts algorithm might be far from what we expect, while
the proposed method can still offer good results. In addition, much better
segmentation results can be achieved by the proposed method for images
with complex background.

The rest of this paper is organized as follows. A brief review of standard
graph cuts algorithm is in Section 2. An iterated conditional mode (ICM)
on graph cuts is proposed in Section 3, followed by the region merging based
localized graph cuts algorithm. Section 4 presents experimental results of
the proposed method on 50 benchmark images in comparison with standard
graph cuts and Grabcut. Finally the conclusion is made in Section 5.
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2. Image Segmentation by Graph Cuts

Image segmentation can be naturally taken as a labeling problem. Given
a set of labels L and a set of sites S (e.g, image pixels or regions),our goal
is to assign each of the sites p ∈ S a label fp ∈ L. The graph cuts frame-
work proposed by Boykov and Jolly [7] addresses the segmentation on binary
images, which solves a labeling problem with two labels. The label set is
L = {0, 1}, where 0 corresponds to the background and 1 corresponds to
the object. Therefore, labeling is a mapping from S to L and is denoted by
f = {fp|fp ∈ L}, i.e. label assignments to all pixels [26]. An energy function
in a ”Gibbs” form is formulated as:

E(f) = Edata(f) + λEsmooth(f) (1)

The data term Edata consists of constraints from the observed data and mea-
sures how sites like the labels that f assigns to them. It is usually defined to
be

Edata(f) =
∑
p∈S

Dp(fp) (2)

where Dp measures how well label fp fits site p. For example, we can use
intensities of marked sites (seeds) to learn the histograms for the object and
the background intensity distributions Pr(I|”obj”) and Pr(I|”bkg”). Then
Dp can be expressed as follows:

Dp(”obj”) = −lnPr(Ip|”obj”) (3)

and
Dp(”bkg”) = −lnPr(Ip|”bkg”) (4)

Dp is the penalty of assigning the label fp to site p ∈ S. The negative
log-likelihoods should be small if p likes fp and vice versa. Esmooth is called
the smoothness term and measures the extent to which f is not piecewise
smooth. The typical form of Esmooth is

Esmooth =
∑

{p,q}∈N

Vpq(fp, fq) (5)

where N is a neighborhood system, such as a 4-connected neighborhood sys-
tem or an 8-connected neighborhood system. The smoothness term typically
used for image segmentation is the Potts Model [34], which is

Vpq(fp, fq) = ωpq × T (fp ̸= fq) (6)
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where:

T (fp ̸= fq) =

{
1 if fp ̸= fq

0 otherwise

The model (6) is a piecewise constant model because it encourages la-
belings consisting of several regions where sites in the same region have the
same labels. In image segmentation, we want the boundary to lie on the
intensity edges in the image. A typical choice for ωp,q is as follows:

ωpq = e−
(Ip−Iq)2

2δ2 · 1

dist(p, q)
(7)

where Ip and Iq are the intensities of sites p and q. For color images, Ip and Iq

can be taken as the sum of values in LAB channels. dist(p, q) is the distance
between sites p and q. Parameter δ is related to the level of variation between
neighboring sites within the same object. The parameter λ is used to control
the relative importance of the data term versus the smoothness term. If λ
is very small, only the data term matters. In this case, the label of each site
is independent from the other sites. If λ is very large, all the sites will have
the same label. Minimization of the energy function can be done using the
min-cut/max-flow algorithm as described in [7].

Now we need to construct a graph corresponding to the energy function
(1). There are two additional nodes: the source terminal s and the sink
terminal t, representing the object and the background respectively. Each
node in the graph is connected to s and t by two t-links. And each pair
of neighboring nodes is connected by an n-link. The weights of t-links for
seed pixels can be seen as hard constraint imposed on the segmentation. In
initialization, the user will mark some pixels as the object or the background
so that these pixels will keep their initial labels in the final result. If pixel
p is marked as an object label, the edge between p and s should be set to 0
and edge between p and t set to infinity. N -links correspond to the penalty
for discontinuity between the two neighboring pixels. They are derived from
the smoothness term Esmooth in energy function (1). And the weight of a
t-link corresponds to a penalty for assigning the label to the pixel. It will be
derived from the data term Edata in the energy function (1).

3. Iterated Region Merging with Localized Graph Cuts

3.1. Initial Segmentation by Modified Watershed Algorithm
In the original graph cuts algorithm [7], the segmentation is directly per-

formed on the image pixels. There are two problems for such a processing.
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(a) (b)

Figure 1: (a) Original image with user input seeds. The background seeds are in green,
and object seeds are in red. (b) The segmentation results by standard graph cuts.

First, each pixel will be a node in the graph so that the computational cost
will be high; second, the segmentation result may not be smooth, especially
along the edges. Fig.1 shows an example of the graph cuts segmentation re-
sult. It can be seen that although there should be clear boundary between the
object and background, the graph cuts fails to give a smooth segmentation
map by labeling some object pixels as background, or vice versa. Actually,
in the early work of Wu and Leahy [31], it was noticed that the minimum
cut criteria favored cutting small sets of isolated nodes in the graph.

To alleviate this problem, Veksler [17] included a shape constraint in
the graph cuts energy function, which encourages a long object boundary.
Some other segmentation criterions were also proposed to solve this problem,
such as normalized cuts [32] and ratio cut [33]. In this paper, we adopted a
relatively simple but effective strategy to solve this problem by introducing
some low level image processing techniques to graph cuts. In [25], Li et
al. used watershed [24] for initial segmentation to speed up the graph cuts
optimization process in video segmentation. With such initialization, the
image can be partitioned into many small homogenous regions, and then
each region, instead of each pixel, is taken as a node in the graph. In this
way the computational cost can be reduced significantly, while the object
boundary can be better preserved. The watershed technique is also used in
this paper with some modification.

Watershed algorithm produces coherent over-segmented regions which
preserve most structures of the interest object. However, the standard wa-
tershed algorithm is very sensitive to noise and thus leads to severe over-
segmentation (see Fig. 2(b)). There are some edge-preserving smoothing
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techniques, such as median filtering, can help to reduce noise and trivial
structures. Therefore, to reduce over-segmentation, we apply median filter-
ing on the gradient image before conducting the watershed algorithm. Fig. 2
shows an example. Fig. 2(a) is the gradient image of the original image in
Fig. 1(a) and Fig. 2(b) is the watershed segmentation of it. Clearly, there is a
severe over-segmentation in Fig. 2(b). Such small regions are not reliable for
calculating the region statistics and they will also increase the computational
cost in our region merging algorithm Fig. 2(c) is the median filtering output
of the gradient image in Fig. 2(a), and Fig. 2(d) is the watershed segmenta-
tion result on it. We see that the over-segmentation is significantly reduced,
while the contour of the object is well preserved. Note that we can use more
sophisticated initial segmentation techniques in the proposed method. To
weaken the importance of initial segmentation, the watershed algorithm is
adopted for its simplicity.

(a) (b)

(c) (d)

Figure 2: Initial segmentation using modified watershed algorithm. (a) is the gradient
image of Fig. 1(a); (c) is the median filtering result of (a); (b) and (d) are the watershed
segmentation results of (a) and (c) respectively. We see that the over-segmentation is
significantly reduced in (d).
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3.2. Iterated Conditional Mode

Although graph cuts technique provides an optimal solution to the en-
ergy function (1) for image segmentation, the complex content of an image
makes it hard to precisely segment the whole image all at once. In the pro-
posed region merging based segmentation algorithm, the one-shot minimum
cut estimation algorithm is replaced by a novel iterative procedure, in which
the object/background distributions are updated according to the previous
segmentation results and new nodes are added until the whole image is seg-
mented. This problem is studied in a way like the iterated conditional mode
(ICM) proposed by Besag [27], where the local conditional probabilities is
maximized sequentially.

In computer vision, an image can be represented by a graph G =< V,E >,
where V is a set of nodes corresponding to image elements (e.g. pixels,
regions), and E is a set of edges connecting the pairs of nodes. We say
two nodes are incident with an edge and that these nodes are adjacent or
neighbors of each other. Edge weights of the graph are computed as the
dissimilarity between the connected nodes (e.g. the distance of region his-
tograms). A sub-graph G′ =< V ′, E ′ > can be defined such that V ′ ⊆ V and
E ′ ⊆ E. In this paper, we consider image regions as the graph nodes, and
the neighborhood of a node in V ′ corresponds to its adjacent regions in the
image. Inspired by ICM, we consider the graph-cuts algorithm in a “divide
and conquer” style: finding the minima on the sub-graph and extending the
sub-graph successively until reach the whole graph. The proposed method
works iteratively, in place of the previous one-shot graph cuts algorithm [7].

Given the observed data dp of site p, the label fp of site p and the set
of labels fS−{p} which is at the site in S-{p}, where fp ∈ L and S-{p}
is the set difference. We sequentially assign each fi by maximizing condi-
tional probability P (fp|dp, fS−{p}) under the MAP-MRF framework. There
are two assumptions in calculating P (fp|dp, fS−{p}). First, the observed data
d1, . . . , dm are conditionally independent given f and that each dp depends
only on fp. Second, f depends on labels in the local neighborhood, which is
Markovianity, i.e. P (fp|dp, fS−{p}) = P (fp|fNp), where Np is a neighborhood
system of site p. Markovianity depicts the local characteristics of labeling.
With the two assumptions we have:

P (fp|dp, fS−{p}) =
P (dp|fp) · P (fp|fNp)

P (d)
(8)
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where P (d) is a normalizing constant when d is given. There is:

P (fp|dp, fS−{p}) ∝ P (dp|fp) · P (fp|fNp) (9)

where ∝ denotes the relation of direct proportion. The posterior probability
satisfies:

P (fp|dp, fS−{p}) ∝ e−U(fp|dp,fNp ) (10)

where U(fp|dp, fNp) is the posterior energy and satisfies:

U(fp|dp, fNp) = U(dp|fp) + U(fp|fNp)

= U(dp|fp) +
∑

p′∈Np

U(fp|fp′) (11)

U(dp|fp) is the data term corresponding to function (1), and
∑

p′∈Np
U(fp|fp′)

is the smoothness term which relates to the number of neighboring sites
whose labels fp′ differ from fp. The MAP estimate is equivalently found by
minimizing the posterior energy:

fk+1 = arg min
f

U(f |d, fk
N) (12)

where fk
N is the optimal labeling of graph nodes obtained in previous k itera-

tions. The labeling result in each iteration is reserved for later segmentation.
This process is done until the whole image is labeled.

3.3. Iterated Region Merging

The proposed iterated region merging method starts from the initially
segmented image by the modified watershed algorithm in Section 3.1. Fig. 3
illustrates the iterative segmentation process by using an example. In each
iteration, new regions which are in the neighborhood of newly labeled object
and background regions are added into the sub-graph, while the other regions
keep their labels unchanged.

The proposed algorithm is summarized in Table 1. The inputs consist
of the initial segmentation from watershed segmentation and user marked
seeds. The object and background data models are updated based on the
labeled regions from the previous iteration. In Section 3.4, the algorithm to
construct data models will be discussed in detail.
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(a) (b) (c)

(d) (e) (f)

Figure 3: The iterative segmentation process. (a) Initial segmentation. (b)-(e) show the
intermediate segmentation results in the 1st, 2nd, 3rd and 4th iterations. The newly added
regions in the sub-graphs are shown in red color and the background regions are in blue
color. We can see the target object is well segmented from the background in (f).
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Table 1: Iterated region merging with localized graph cuts
Algorithm1 : RegionMergingGraphCuts()
Input:
– Initial segmentation of the given image.
– User labeled object regions Ro and background regions Rb.
Output: Segmentation result.
1. Build object and background data models based on labeled re-

gions Ro and Rb.
2. Build subgraph G′ =< V ′, E ′ >, where V ′ consist of Ro, Rb and

their adjacent regions.
3. Update object and background data models using the SelectLa-

bels() algorithm (refer to section 3.4).
4. Use graph cuts algorithm to solve the min-cut optimization on

G′, i.e.
arg min

f
U(f |d, fk

N).

5. Update object regions Ro and background regions Rb according
to the labeling results from step 4.

6. Go back to step 2, until no adjacent regions of Ro and Rb can
be found.

7. Return the segmentation results.
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3.4. Update Object/Background Models

Incorporating user input information in segmentation is one of the most
interesting features of graph cuts method [8]. There is a lot of flexibility in
how the information can be used to adjust the algorithm for a desired seg-
mentation, for example, initializing the algorithm or editing the results. With
the given information, the object and background models can be learned for
formulating the data term in function (1), which describes how well label fp

fits site p. In step 2 of the proposed Algorithm 1, the models are updated
based on the previously labeled regions. However, if all the labeled regions
are used to update the models, the misclassified regions will probably re-
inforce themselves in the next round of iteration. Therefore, we propose
a semi-supervised approach in which the labeled regions in the (i − 1)th
iteration are partially selected to be the seeds for the ith iteration. This
model updating process is independent of the graph cuts optimization algo-
rithm, aiming is to increase the confidence levels of the color models. The
main idea of our object/background models updating process can be sum-
marized as follows: in each iteration, a set of confident labels is chosen by a
semi-supervised approach, such that the corresponding regions are taken as
confident regions. Based on these confident regions, new object/background
models are constructed for the graph cuts segmentation, as an integral step
of the proposed Algorithm 1.

There are a number of semi-supervised algorithms which use both labeled
and unlabeled data to build classifiers. With the merits of less human effort
and higher accuracy, they are of great interest in practice. The Yarowsky
algorithm [28] is a well-known semi-supervised algorithm, which is widely
used in computational linguistics. Some variants of the original Yarowsky
algorithm [29, 30] were also developed to optimize specific objective functions.
In this section, we adopt it to build better object/background models for the
proposed iterated segmentation algorithm.

Suppose ϕx(j) is the probability that instance x belongs to the jth class,
and πx(j) is the score of the model in predicting label j for the region x. An
object function based on cross-entropy is defined as [29]:

l(ϕ, π) =
∑
x∈X

H(ϕx||πx) =
∑
x∈X

∑
j

ϕx(j)log
1

πx(j)
(13)

The minimization of function (13) encourages the unlabeled data becomes
labeled, and its assigned label agrees with the model prediction. Since the
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Table 2: Algorithm of label selection for constructing color model in the ith iteration
Algorithm2: SelectLabels()
Input:
– Seeds regions Y 0 = Ro ∪ Rb

– Labeled regions X after the 1st iteration, which contain Y 0 and their
adjacent regions ⊥.
Output: labeling Y i+1.
1. For i ∈ {0, 1, . . .} do.
2. ∧i = {x ∈ X|Y i ̸= ⊥}.
3. Train classifier on (∧i, Y i); resulting in πi.
4. For each example x ∈ X

4.1 set ŷ = argmaxjπ
i+1
x (j)

4.2 set

Y i+1 =


Y 0

x if x ∈ ∧0

ŷ if x ∈ πi ∨ πi+1
x (ŷ) > 1/L

⊥ otherwise

5. If Y i+1 = Y i, stop. Otherwise, go 1.
6. return Y i.

goal is to build color models based on previously labeled regions, we would
like to choose the regions whose predictions are most confident according to
the Yarowsky algorithm. With the fact that seeds regions in the (i − 1)th
iteration are confident for the graph cut segmentation, we only have to decide
which are the confident regions resulting from the graph cut in the (i− 1)th
iteration. The Algorithm 2 in Table 2 describes the process of how to choose
the labeled regions in the (i− 1)th iteration for constructing color models of
the ith iteration, which is corresponding to step 3 in Algorithm 1.

In Algorithm 2, the outer loop is given a seed set Y 0 to start with. In step
2, a labeled training set ∧i is constructed from the most confident predictions
Y i. The score πx(j) is related to all the feature values in a sample x , and is
given by:

πx(j) =
1

|Fx|
∑
f∈Fi

θfj (14)

where θfj =
|∧fj |+1/L|Vf |

|∧f |+|Vf |
, |Fx| is the number of features of a region x, L is the

number of labels, | ∧fj | is the number of regions with label j and feature f ;
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Figure 4: Relative entropy of the object and background distributions (Fig.3) in different
iterations. The three plots represent the red, green and blue color channels respectively.

|Vf | and | ∧f | are respectively the numbers of unlabeled and labeled regions
that have feature f . The feature used here is the average RGB color of a
region. Abney [29] proved that the definition of score πx(j) can promise the
object function (13) to decrease with the iteration number until it reaches a
minimum. The predicted label for region is given in step 4.1 in Algorithm 2,
where it is assumed that the classifier makes confidence-weighted predictions.

To check the relationship between the object and background distribu-
tions, we use the relative entropy to evaluate the distance between them. It is
defined as the Kullback-Leibler distance from the distribution of foreground
to that of the background, i.e. DKL(p||q) =

∑
x∈X p(x)log p(x)

q(x)
, where p(x)

and q(x) are the probability density functions of the object and background
respectively. Fig.4 shows the value of relative entropy in all the 7 iterations
for the image in Fig.3(a). As the value of relative entropy goes up from
the first iteration, the data models of the object and background become
more and more distinguishable. This leads to a higher probability of well
separating the object from the background.

In the proposed algorithm, segmentation is obtained on different levels
of sub-graphs. In light of graph cuts, the segmentation keeps the property
of global optimality on each sub-graph. Adding new seeds according to the
previous optimal labeling, it increases the amount of useful information that
can be used for further segmentation while avoiding introducing much inter-
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Figure 5: The energy evolution of the segmentation results in Fig. 3. Graph cuts energy
decreases in the iterated segmentation process.

ference information from unknown regions. Fig.5 shows the energy evolution
of the image segmentation process in Fig.3. Fig.6 shows another example.
With the user input seeds (Fig.6(g)), the amount of object and background
seeds increases automatically based on the segmentation result in each it-
eration. It is straightforward that our algorithm guarantees the monotonic
decrease of energy because iterative minimization can be taken as a multi-
step minimization of the total energy.

4. Experimental Results

We evaluate the segmentation performance of the proposed method in
comparison with the graph cuts algorithm [7] and GrabCut [9]. Since we
use watershed for initial segmentation, for a fair comparison, we also extend
the standard graph cuts to a region based scheme, i.e. we use the regions
segmented by watershed, instead of the pixels, as the nodes in the graph.
GrabCut algorithm is also an interactive segmentation technique based on
graph cuts and has the advantage of reducing user’s interaction under com-
plex background. It allows the user to drag a rectangle around the desired ob-
ject. Then the color models of the object and background are constructed ac-
cording to this rectangle. Hence in total we have four algorithms in the exper-
iments: the pixel based graph cuts (denoted by GCp), the region based graph
cuts (GCr), the GrabCut and the proposed iterated region merging method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Another example of energy evolution. (a)-(f) show the object and background
seeds in different iterations based on the user input seeds shown in (g). (h) shows the final
segmentation result, and (i) shows the energy values, which are calculated on the whole
graphs by using the seeds obtained in each iteration. We see that the energy decreases
monotonically.
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with localized graph cuts (denoted by IRM -LGC). The software of the pro-
posed method can be downloaded at http://www4.comp.polyu.edu.hk/ cslzhang/code.htm.

In Sections 4.1 and 4.2, the four algorithms are evaluated qualitatively.
In Section 4.3, the segmentation results are evaluated quantitatively. Some
discussions are made in Section 4.4. Our experiment database contains 50
benchmark test images selected from online resources 2 3, where 10 of them
contain objects with simple background and the others are images with rela-
tively complex background. Every image in our database has a figure-ground
assignment labeled by human subjects.

4.1. Comparison with Graph Cuts

In this subsection, the segmentation results are compared between the
proposed algorithm and algorithms GCp and GCr. Note that GCr algorithm
is used as the first step in lazy snapping [10]. This experiment can thus par-
tially compare the performance of lazy snapping and IRM -LGC. However,
a direct comparison of the two methods is not a fair choice, since lazy snap-
ping has another refinement step which adjusts the mis-located boundaries
produced by the first step. Fig.7 shows some images with simple background.
In these examples, it is relatively easy to extract the objects from the back-
ground. Therefore some of the results by GCp or GCr are not too bad, while
the proposed method works better.

Extracting objects of interest from complex background is a more chal-
lenging task. Fig.8 shows some images with relatively complex background
and their segmentation results. In these images, the objects contain weak
boundaries due to poor contrast and noise, and the colors of some background
regions are very close to those of the objects. Given the same amount of user
input, the proposed IRM -LGC achieves much better segmentation results
than the GCp and GCr algorithms.

4.2. Comparison with GrabCut

Fig.9 compares the results of IRM -LGC and GrabCut. The left column
shows the original images with the seeds points. The middle column shows
the segmentation results of GrabCut. Implementation of GrabCut uses 5
GMMs to model RGB color data and parameter λ is set to be 50. The right

2http://www.research.microsoft.com/vision/cambridge/segmentation/
3http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Figure 7: Segmentation results of images with simple background. The first row shows
the original images with seeds. Red strokes are for the object and the green strokes are
for the background. The second to the forth row show the segmentation results by GCp,
GCr and IRM -LGC respectively.
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Figure 8: Segmentation results of images with complex background. The first row shows
the original images with seeds. From the second to the forth row, there are the segmenta-
tion results obtained by GCp , GCr and IRM -LGC respectively.
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Figure 9: Segmentation results by GrabCut and the proposed method. The left col-
umn shows the original images with seeds. The blue rectangle is the interaction used in
GrabCut, while the red and green strokes are the object and background seeds used in the
proposed algorithm. The middle column shows the results of GrabCut. The right column
shows results of IRM -LGC.
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Table 3: The TNF, TPF, FNF and FPF results by different methods.

Algorithms TPF(%) FNF(%) TNF(%) FPF(%)

GrabCut 83.65 16.35 96.59 3.41
GCp 82.72 17.28 92.37 7.63
GCr 88.01 11.99 93.78 6.22
IRM -LGC 91.29 8.71 97.75 2.25

column is results of IRM -LGC. When the objects to be segmented contain
similar colors with the background, GrabCut might fail to correctly segment
them. Although our algorithm uses more user interaction than GrabCut,
this tradeoff leads to more precise segmentation results.

4.3. Quantitative Evaluation

To better evaluate our algorithm, a quantitative evaluation of the segmen-
tations is given by comparing with ground truth labels in the database. The
qualities of segmentation are calculated by using four measures: the true-
positive fraction (TPF), false-positive fraction (FPF), true-negative fraction
(TNF) and false-negative fraction (FNF):

TPF =
|AA ∩ AG|

|AG|
, FPF =

|AA − AG|
|AG|

TNF =
|AA ∪ AG|

|AG|
, FNF =

|AG − AA|
|AG|

where AG represents the area of the ground truth of foreground and its
complement is AG; AA represents the area of segmented foreground by the
tested segmentation method. Table 3 lists the results of TPF, FNF, TNF
and FPF by the three methods over the 50 test images. We see the proposed
method achieves the best TPF, FNF, TNF and FPF results.

As mentioned, the proposed IRM -LGC image segmentation method uses
a modified watershed algorithm for initial segmentation. The median filtering
of the gradient image controls the watershed segmentation output. To exam-
ine how the initial segments affect the final result of IRM -LGC, we applied
the algorithm to different initial segmentation with different granularities,
i.e. different numbers and sizes of regions in the initial segmentation. This
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can be done by changing the filtering times and using different sizes of filter
windows. Fig.10 shows an example. The first row shows three initial segmen-
tations by the modified watershed algorithm, where the number of regions is
203, 372 and 1296 respectively. The second row shows the final segmentation
results. We can see that segmentation quality is not sensitive to the initial
segmentation. Fig.11 compares the segmentation quality of the same image
with 42 different initial segmentations, from which we can clearly see that
the segmentation results are not influenced much by the initialization.

Figure 10: Initial segmentation of an image with different numbers of regions. In the
first row, from the left to the right, there are 203, 372 and 1296 regions in the initial
segmentation respectively. The second row shows the final segmentation results.

We use the max-flow algorithm [37] to implement the proposed IRM -
LGC method. The worst case running time complexity for this algorithm is
O(mn2|C|), where n is the number of nodes, m is the number of edges and
|C| is the cost of the minimum cut in the graph. In each iteration of IRM -
LGC, the number of nodes and edges are largely reduced in comparison of
the pixel based graph cuts algorithm. Our experiment is implemented on a
PC with Intel Core 2 Duo 2.66 GHz CPU, 2GB memory. The running time
to perform min-cut/max-flow algorithm on the whole graph which is based
on image pixels is around 10-20ms, while the proposed IRM -LGC takes far
less than 1ms. However, it should be noted that the majority of time for our
algorithm is spent on constructing color models and updating the graph (∼
0.3s per iteration), thus the speedup on the min-cut/max-flow part would be
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Figure 11: Segmentation qualities vs. initial segmentation in different granularities. For
the original image used in Fig.10, 42 different initial segmentations are obtained and used
in the proposed algorithm. The segmentation quality is measured by TPF, FPF, TNF
and FNF scores.

relatively modest for the overall algorithm.

4.4. Discussion

In graph cuts based segmentation, parameter λ is used to weight the data
and smoothness terms. In recent years, some literature [35, 36] has studied
the parameter selection for graph cuts. There are two problems in graph
cuts algorithm about the selection of λ. First, given different images, graph
cuts with a fixed value of λ cannot lead to satisfactory segmentation. The
appropriate λ values would vary largely among different images, so the user
may have to spend a significant amount of time searching for it. Fortunately,
the proposed IRM -LGC is not sensitive to the selection of λ across different
images. This can be illustrated by the following experiments. In practice we
found that the region based graph cuts (i.e. GCr) has similar property to
pixel based graph cuts(i.e. GCp) in parameter selection. Sometimes, GCr

may not lead to satisfying segmentation result throughout the searching space
of λ. Thus to study on a more general case, the GCp is used in the following
experiments. Fig.12 shows some examples of the segmentation by GCp and
IRM -LGC. For a comparable quality of the segmentation results by the
two methods, the best value of parameter λ in GCp varies a lot for different
images (2nd row in Fig.12); however, a constant λ in IRM -LGC can lead to
satisfying segmentations across different images (3rd row in Fig.12).
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(a) Images with user input seeds

(b) GCp,λ = 18 (c) GCp,λ = 50 (d) GCp,λ = 170

(e) IRM -LGC,λ = 50 (f) IRM -LGC,λ = 50 (g) IRM -LGC,λ = 50

Figure 12: The values of parameter λ in GCp and IRM -LGC for different images.
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The second problem of standard graph cuts is that different values of λ
will result in very different segmentation results for the same image. Fig.13
compares GCp and IRM -LGC by increasing the value of parameter λ. The
original image with user input seeds is in Fig.12(a). In Fig.13(a), GCp pro-
duces a relatively good segmentation with λ = 2. In Fig.13(b) and Fig.13(c),
it produces big segmentation errors with λ = 50 and λ = 150, respectively.
However, by using IRM -LGC, we can obtain similar and good segmentation
results for a wide range of values: λ = 2, λ = 50 and λ = 150.

(a) GCp,λ = 2 (b) GCp,λ = 50 (c) GCp,λ = 150

(d) IRM -LGC,λ = 2 (e) IRM -LGC,λ = 50 (f) IRM -LGC,λ = 150

Figure 13: Image segmentation with different parameter values. (a-c) show the segmented
objects by GCp and (d-f) show the segmented objects by IRM -LGC.

IRM -LGC can reduce greatly the search range of λ. On most of the test
images in our database, λ is roughly between 50 and 100 for the proposed
method, while for GCp, the values vary from 10 to 200. An explanation
for this is that if the data term in energy function can provide sufficient
information for labeling, the graph node does not need a strong relationship
with its neighbors. The proposed method gives good object/background
models as iteration process goes on, thus the changes of λ for various image
can be reduced. This brings much benefit for users in real applications.

Although graph cuts algorithm has relaxed the user input compared with
some other algorithms, such as livewire [1], the input seeds cannot always
efficiently indicate the background regions, therefore when the connecting
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regions of the object and background have similar colors, they are still hard
to be segmented correctly. It is empirically found that if the input seeds can
cover the main features of the object and background, good segmentation
result can be obtained. Some promising work [20, 23] has exploited effective
methods for arc weight estimation during the seeds marking process. Their
work takes into account image attributes and object information in order
to enhance the discontinuities between object and background, whereas a
visual feedback can be provided to the user for the next action. We will
investigate how to incorporate these methods into our work in the future.
Fig.14 shows a failure example. The regions circled in red only connect to
object regions on the sub-graph, so they are easily assigned to the same
label. Moreover, our method uses an initial segmentation to partition the
image into regions, incorrect partition in initialization will also affect the
final segmentation result.

IRM -LGC is independent of the initial segmentation step. However,
under-segmented regions from the naive watershed algorithm cannot be re-
partitioned due to the region-merging style of IRM -LGC. To reduce the
over-segmentation and well keep the coherence of regions, more sophisti-
cated pre-segmentation algorithms can be adopted for the initialization. For
example, connected filters with morphological reconstruction operators can
eliminate or merge connected components produced by watershed algorithm
[21]. Hence they might be used as a more suitable tool for improving the
initial segmentation quality than median filters.

As in traditional graph cuts algorithm, in the proposed IRM -LGC the
user input information is also crucial for obtaining desirable segmentation.
Since the newly added seeds in each iteration depend on the segmentation re-
sults in the previous iteration, the misclassified regions will probably destroy
the rest part of segmentation. In the future work, other strategies of seeds
selection will be taken into account. For example, the work in [20] does not
use the seeds from previous delineation to re-compute the edge weights. It
makes the well-segmented regions unchanged and therefore, the segmentation
process becomes more traceable.

5. Conclusion

This paper proposed an iterative region merging based image segmenta-
tion algorithm by using graph cuts for optimization. The proposed algorithm
starts from the user labeled sub-graph and works iteratively to label the sur-
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Figure 14: A failure example of the proposed method.

rounding un-segmented regions. It can reduce the interference of unknown
background regions far from the labeled regions so that more robust segmen-
tation can be obtained. With the same amount of user input, our algorithm
can achieve better segmentation results than the standard graph cuts, espe-
cially when extract the object from complex background. Qualitative and
quantitative comparisons with standard graph cuts and GrabCut show the
efficiency of the proposed method. Moreover, the search space of parameter
λ in graph cuts is also reduced greatly by the iterated region merging scheme.
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