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Abstract—With the rapid development of digital imaging and
communication technologies, image set based face recognition
(ISFR) is becoming increasingly important. One key issue of
ISFR is how to effectively and efficiently represent the query
face image set by using the gallery face image sets. The set-to-set
distance based methods ignore the relationship between gallery
sets, while representing the query set images individually over
the gallery sets ignores the correlation between query set images.
In this paper, we propose a novel image set based collaborative
representation and classification method for ISFR. By modeling
the query set as a convex or regularized hull, we represent this
hull collaboratively over all the gallery sets. With the resolved
representation coefficients, the distance between the query set
and each gallery set can then be calculated for classification.
The proposed model naturally and effectively extends the image
based collaborative representation to an image set based one, and
our extensive experiments on benchmark ISFR databases show
the superiority of the proposed method to state-of-the-art ISFR
methods under different set sizes in terms of both recognition
rate and efficiency.

Index Terms—image set, collaborative representation, set to
sets distance, face recognition.

I. INTRODUCTION

Image set based classification has been increasingly em-
ployed in face recognition [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10] and object categorization [11], [12] in recent
years. Due to the rapid development of digital imaging and
communication techniques, now image sets can be easily
collected from multi-view images using multiple cameras [11],
long term observations [7], personal albums and news pictures
[13], etc. Meanwhile, image set based face recognition (ISFR)
has shown superior performance to single image based face
recognition since the many sample images in the gallery set
can convey more within-class variations of the subject [8]. One
special case of ISFR is video based face recognition, which
collects face image sets from consecutive video sequences [1],
[14], [15]. Similar to the work in [5], [8], in this paper we focus
on the general case of ISFR without considering the temporal
relationship of samples in each set.

The key issues in image set based classification include
how to model a set and consequently how to compute the
distance/similarity between query and gallery sets. Researchers
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have proposed parametric and non-parametric approaches for
image set modeling. Parametric modeling methods model each
set as a parametric distribution, and use Kullback-Leibler
divergence to measure the similarity between the distributions
[2], [7]. The disadvantage of parametric set modeling lies in
the difficulty of parameter estimation, and it may fail when the
estimated parametric model does not fit well the real gallery
and query sets [11], [4], [8].

Many non-parametric set modeling methods have also been
proposed, including subspace [11], [1], manifold [16], [17],
[4], [12], [18], affine hull [5], [8], convex hull [5], and
covariance matrix based ones [18], [19], [20]. The method
in [11] employs canonical correlation to measure the simi-
larity between two sets. A projection matrix is learned by
maximizing the canonical correlations of within-class sets
while minimizing the canonical correlations of between-class
sets. The methods in [21] use manifold to model an image
set and define a manifold-to-manifold distance (MMD) for
set matching. MMD models each image set as a set of
local subspaces and the distance between two image sets
is defined as a weighted average of pairwise subspace to
subspace distance. As MMD is a non-discriminative measure,
Manifold Discriminant Analysis (MDA) is proposed to learn
an embedding space by maximizing manifold margin [12].
The performance of subspace and manifold based methods
may degrade much when the set has a small sample size but
big data variations [8], [18]. In affine hull and convex hull
based methods [5], [8], the between-set distance is defined
as the distance between the two closest points of the two
sets. When convex hull is used, the set to set distance is
equivalent to the nearest point problem in SVM [22]. In [23],
a method called sparse approximated nearest points (SANP)
is proposed to measure the dissimilarity between two image
sets. To reduce the model complexity of SANP, a reduced
model, which is called regularized nearest points (RNP), is
proposed by modeling each image set as a regularized hull
[24]. However, the closest points based methods [5], [8], [25],
[24] rely highly on the location of each individual sample
in the set, and the model fitting can be heavily deteriorated
by outliers [18]. A collaborative regularized nearest points
(CRNP) method is proposed in [26] to extend RNP.

To improve the classification performance, the kernel trick
can be introduced to map the image sets to high-dimensional
subspaces, e.g., kernel mutual subspace method [27] and
kernel discriminant transformation [28]. In [18], an image
set is represented by a covariance matrix and a Riemannian
kernel function is defined to measure the similarity between



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2014 2

two image sets by a mapping from the Riemannian manifold
to a Euclidean space. With the kernel function between two
image sets, traditional discriminant learning methods, e.g.,
linear discriminative analysis [29], partial least squares [30],
kernel machines, can be used for image set classification [19],
[20]. The disadvantages of covariance matrix based methods
include the computational complexity of eigen-decomposition
of symmetric positive-definite (SPD) matrices and the curse
of dimensionality with limited number of training sets.

No matter how the set is modeled, in almost all the
previous works [11], [1], [16], [17], [4], [12], [18], [5],
[8], [24], the query set is compared to each of the gallery
sets separately, and then classified to the class closest to it.
Such a classification scheme does not consider the correlation
between gallery sets, like the nearest neighbor or nearest
subspace classifier in single image based face recognition.
In recent years, the sparse representation based classification
(SRC) [31] has shown interesting results in image based face
recognition. SRC represents a query face as a sparse linear
combination of samples from all classes, and classifies it to
the class which has the minimal representation residual to
it. Though SRC emphasizes much on the role of l1-norm
sparsity of representation coefficients, it has been shown in
[32] that the collaborative representation mechanism (i.e.,
using samples from all classes to collaboratively represent
the query image) is more important to the success of SRC.
The so-called collaborative representation based classification
(CRC) with l2-regularization leads to similar results to SRC
but with much lower computational cost [32]. In [33], feature
weights are introduced to the representation model to penalize
pixels with large error so that the model is robust to outliers.
Moreover, a kernel sparse representation model is proposed
for face recognition by mapping features to a high dimensional
Reproducing Kernel Hilbert Space (RKHS), which further im-
proves the recognition accuracy [34]. Similarly, a robust kernel
representation model is proposed with iteratively reweighted
algorithms [35].

One may apply SRC/CRC to ISFR by representing each
image of the query set over all the gallery sets, and then
using the average or minimal representation residual of the
query set images for classification. However, such a scheme
does not exploit the correlation and distinctiveness of sample
images in the query set. If the average representation residual
is used for classification, the discrimination of representation
residuals by different classes will be reduced; if the minimal
representation residual is used, the classification can suffer
from the outlier images in the query set. In addition, there
are redundancies in an image set. The redundancies will lead
to great storage burden and computational complexity, and
deteriorate the recognition performance.

In this paper, we propose a novel image set based collabo-
rative representation and classification (ISCRC) approach for
ISFR, as illustrated in Fig. 1. The query set, denoted by Y
(each column of Y is an image in the set) is modeled as
a hull Y a with the sum of coefficients in a being 1. Let
Xk, k = 1, 2, ...,K, be a gallery set. We then propose a
collaborative representation based set (i.e., Y ) to sets (i.e.,
X = [X1, ...,Xk, ...,XK ]) distance (CRSSD for short); that
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Fig. 1. Image set based collaborative representation and classification
(ISCRC).
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Fig. 2. Illustration of image set margin.

is, we represent the hull Y a over the gallery sets X as Xb,
where b is a coefficient vector. Consequently, we can classify
the query set Y by checking which gallery set has the minimal
representation residual to the hull Y a. To get a stable solution
to CRSSD, regularizations can be imposed on a and b. In
the proposed ISCRC, the gallery sets Xk can be compressed
to a smaller size to remove the redundancy so that the time
complexity of ISCRC can be much reduced without sacrificing
the recognition rate. Our experiments on three benchmark
ISFR databases show that the proposed ISCRC is superior
to state-of-the-art methods in terms of both recognition rate
and efficiency.

To better illustrate the motivation of ISCRC, we use an
example to explain the superiority of ISCRC over set to set
distance based classifiers (e.g., CHISD [5], SANP [8], RNP
[24]) from a large margin perspective. Large margin principle
has been widely used in classifier design (e.g., SVM [22],
LVQ [36]), ensemble learning (e.g., AdaBoost [37]) and metric
learning (e.g., MDA [12], LMNN [38]). In classification, large
margin can lead to better generalization ability [39]. In [40],
SRC is interpreted as a margin classifier and a margin is
derived for SRC. Actually, in image set based classification,
MDA [12], DCC [11] and CDL [18] all try to learn a
discriminative set to set distance in a large margin manner, i.e.,
pull the similar image sets together while push the dissimilar
image sets away. Similar to sample margin in nearest neighbor
classifier, image set margin can be defined. Given a query set
Y but multiple gallery sets Xk, k = 1, 2, ...,K, as illustrated
in Fig. 2, the image set margin is defined as:

marginY = d(Y ,Xnearmiss)− d(Y ,Xnearhit) (1)
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where Xnearhit is the nearest gallery set of Y with the same
class label, Xnearmiss is the nearest gallery set of Y with
a different class label, d(Y ,Xnearmiss) is the distance be-
tween Y and Xnearmiss, and d(Y ,Xnearhit) is the distance
between Y and Xnearhit. If marginY is positive, Y can
be correctly classified; otherwise, Y would be misclassified.
Hence, a large margin is desired in image set classification.
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Fig. 3. Margin comparison between ISCRC and CHISD (a) and RNP (b).

Fig. 3 shows the margin comparison between the proposed
ISCRC and hull based set to set distances (i.e., CHISD
[5] and RNP [24]), where the Honda/USCD1 database [14]
is used. Fig. 3(a) is the comparison between ISCRC and
convex hull based image set distance, i.e., CHISD. The image
sets marked by pentagram are misclassified by CHISD with
negative margin while correctly classified by ISCRC with
positive margin. Besides, the margin of the other image sets
are all enlarged, which represents better generalization ability
in classification. Fig. 3(b) illustrates the comparison between
ISCRC and regularized hull based image set distance, i.e.,
RNP. Although RNP classifies all the image sets correctly
with positive margin, ISCRC results in much larger margin
than RNP. Both comparisons show that the proposed ISCRC
can lead to larger image set margin compared with set to set
distance, indicating that ISCRC would get better generalization
performance.

The rest of this paper is organized as follows. Section II
discusses in detail the proposed CRSSD and ISCRC methods.
Section III presents the regularized hull based ISCRC, fol-
lowed by the convex hull based ISCRC in Section IV. Section
V conducts experiments and Section VI gives our conclusions.

1http://vision.ucsd.edu/ leekc/HondaUCSDVideoDatabase/HondaUCSD.html

The main abbreviations used in the development of our method
are summarized in Table I.

TABLE I
THE MAIN ABBREVIATIONS USED IN THIS PAPER

ISFR image set based face recognition
SRC sparse representation based classification
CRC collaborative representation based classification

CRSSD collaborative representation based
set to sets distance

ISCRC image set based collaborative
representation and classification

RH-ISCRC regularized hull based ISCRC
KCH-ISCRC kernelized convex hull based ISCRC

II. COLLABORATIVE REPRESENTATION BASED SET TO
SETS DISTANCE

We first introduce the hull based set to set distance in II-A,
and then propose the collaborative representation based set to
sets distance (CRSSD) in II-B. With CRSSD, the image set
based collaborative representation and classification (ISCRC)
scheme can be naturally proposed. In II-C and II-D, the
convex hull and regularized hull based CRSSD are respectively
presented.

A. Hull based set to set distance

In image set based classification, compared to the parametric
modeling of image set, non-parametric modeling does not
impose assumptions on the data distribution and inherits many
favorable properties [11], [8], [18]. One simple non-parametric
set modeling approach is the hull based modeling [5], [8],
which models a set as the linear combination of its samples.
Given a sample set Y = {y1, ...,yi, ...,yna

}, yi ∈ <d, the
hull of set Y is defined as: H(Y ) = {

∑
aiyi}. Usually,∑

ai = 1 is required and the coefficients ai are required to
be bounded:

H(Y ) = {
∑
aiyi |

∑
ai = 1, 0 ≤ ai ≤ τ} (2)

If τ = 1, H(Y ) is a convex hull [41]. If τ < 1, H(Y ) is a
reduced convex hull [22]. For the convenience of expression,
in the following development we call both the cases convex
hull.

By modeling a set as a convex hull, the distance between
set Y = {y1, ...,yi, ...,yna

} and set Z = {z1, ...,zj , ...,znz
}

can be defined as follows:

mina,b ‖
∑
aiyi −

∑
bjzj‖22

s.t.
∑
ai = 1, 0 ≤ ai ≤ τ∑
bj = 1, 0 ≤ bj ≤ τ

(3)

When the two sets have no intersection, the set to set distance
in Eq. (3) becomes the distance between the nearest points in
the two convex hulls (CHISD [5]), as illustrated in Fig. 4. It
is not difficult to see that such a distance is equivalent to the
distance computed by SVM [22]. If the discriminative function
of SVM is f = wx+ b, then w =

∑
aiyi −

∑
bjzj and the

margin is 2/‖w‖. If we consider each image set as one class,
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then maximizing margin between the two classes is equivalent
to finding the set to set distance [42]. In image set based face
recognition, there is usually no intersection between image
sets of different persons. If there are intersections between
two image sets, then τ can be set as below 1 and the resulting
problem can be related with soft-margin SVM and υ-SVM
[43], [5]. Unfortunately, such a distance relies highly on the
location of each individual sample and can be sensitive to
outliers [18]. More detailed discussions about convex/affine
hull based classifiers can be found in [22], [43], [5], [44].

Y Z

Fig. 4. Convex hull based set to set distance.

B. Collaborative representation based set to sets distance and
classification

In image set based face recognition (ISFR), we have a
query set Y but multiple gallery sets Xk, k = 1, 2, ...,K. One
fact in face recognition is that the face images from different
people still have much similarity. If we compute the distance
between Y and each Xk by using methods such as hull based
set to set distance (refer to II-A), the correlation between
different gallery sets will not be utilized. As we discussed in
the Introduction section, inspired by the SRC [31] and CRC
[32] methods in image based face recognition, here we propose
a novel ISFR method, namely image set based collaborative
representation and classification (ISCRC).

The key component of ISCRC is the collaborative represen-
tation based set to sets distance (CRSSD) defined as follows.
Let X = [X1, ...,Xk, ...,XK ] be the concatenation of all
gallery sets. We model each of Y and X as a hull, i.e., Y a
and Xb, where a and b are coefficient vectors, and then we
define the CRSSD between set Y and sets X as:

mina,b ‖Y a−Xb‖2 s.t.
∑
ai = 1 (4)

where ai is the ith coefficeint in a and we let
∑
ai = 1

to avoid the trivial solution a = b = 0. In Eq. (4), the
hull Y a of the query set Y is collaboratively represented
over the gallery sets; however, the coefficients in a will make
the samples in Y be treated differently in the representation
and the subsequent classification process. By minimizing the
distance between Y a and Xb, the outliers (e.g., one frame
with large corruptions/occlusions) in both the query image
set Y and the gallery image sets X will be assigned with
very small representation coefficients. Therefore, the impact
of outliers can be much alleviated. Our experimental results
in Section V showed that ISCRC is robust to face variations
in different conditions.

Suppose that the coefficient vectors â and b̂ are obtained by
solving Eq. (4), then we can write b̂ as b̂ = [b̂1; ...; b̂k; ...; b̂K ],
where b̂k is is the sub-vector of coefficients associated with

gallery set Xk. Similar to the classification in SRC and CRC,
we use the representation residual of hull Y â by each set
Xk to determine the class label of Y . The classifier in the
proposed ISCRC is:

Identity(Y ) = argmink {rk} (5)

where rk =
∥∥∥Y â−Xkb̂k

∥∥∥2
2
.

Clearly, the solutions to a and b in Eq. (4) determine the
CRSSD and hence the result of ISCRC. In order to get stable
solutions, we could impose reasonable regularizations on a
and b. In the following sections II-C and II-D, we discuss the
convex hull based CRSSD and regularized hull based CRSSD,
respectively.

C. Convex hull based CRSSD

One important instantiation of CRSSD is the convex hull
based CRSSD. In this case, both the hulls Y a and Xb are
required to be convex hulls, and then the distance in Eq. (4)
becomes

mina,b ‖Y a−Xb‖2
s.t.
∑
ai = 1,

∑
bj = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,
0 ≤ bj ≤ τ, j = 1, ..., nb

(6)

where ai and bj are the ith and jth coefficients in a and b,
respectively, na and nb are the number of samples in set Y
and sets X , respectively, and τ ≤ 1.

Y 1 2
[ , ,..., ]

K
=X X X X

Fig. 5. Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is
shown in Fig. 5. Different from the CHISD method in [5],
which models each gallery set as a convex hull, here we
model all the gallery sets as one big convex hull. Similar
to the closest points searching in SVM, convex hull based
CRSSD aims to find the closest points in the query set Y
and the whole gallery set X in a large margin manner. With
convex hull based CRSSD, the corresponding ISCRC method
can be viewed as a large margin based classifier in some sense.
Nonetheless, the classification rules in SVM and ISCRC are
very different.

D. lp-norm regularized hull based CRSSD

The convex hull modeling of a set can be affected much by
outlier samples in the set [18]. To make CRSSD more stable,
the lp-norm regularized hull can be used to model Y and X .
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For the query set Y , we should keep the constraint
∑
ai = 1

to avoid the trivial solution, and the lp-norm regularized hull
of Y is defined as

H(Y ) = {
∑
aiyi |‖a‖lp < δ} s.t.

∑
ai = 1 (7)

For the gallery set X , its regularized hull is defined as:

H(X) = {
∑
bixi |‖b‖lp < δ} (8)

Finally, the regularized hull based CRSSD between Y and X
is defined as:

mina,b ‖Y a−Xb‖22
s.t.‖a‖lp < δ1, ‖b‖lp < δ2,

∑
ai = 1

(9)

III. REGULARIZED HULL BASED ISCRC

In Section II, we introduced CRSSD, and presented two im-
portant instantiations of it, i.e., convex hull based CRSSD and
regularized hull based CRSSD. With either one of them, the
ISCRC (refer to Eq. (5)) can be implemented to perform ISFR.
In this section, we discuss the minimization of regularized
hull based CRSSD model, and the corresponding classification
scheme is called regularized hull based ISCRC, denoted by
RH-ISCRC. The minimization of convex hull based CRSSD
and the corresponding classification scheme will be discussed
in Section IV.

A. Main model

We can re-write the regularized hull based CRSSD model
in Eq. (9) as its Lagrangian formulation:

mina,b ‖Y a−Xb‖22 + λ1‖a‖lp + λ2‖b‖lp
s.t.
∑
ai = 1

(10)

where λ1 and λ2 are positive constants to balance the repre-
sentation residual and the regularizer.

In ISFR, each gallery set Xk often has tens to hundreds
of sample images so that the whole set X can be very big,
making the computational cost to solve Eq. (10) very high.
Considering the fact that the images in each set Xk have
high redundancy, we can compress Xk into a much more
compact set, denoted by Dk, via dictionary learning methods
[45], such as KSVD [46] and metaface learning [47]. Let
D = [D1, ...,Dk, ...,DK ]. We can then replace X by D
in Eq. (10) to compute the regularized hull based CRSSD:

(â, β̂) = argmina,β

{
‖Y a−Dβ‖22 +
λ1‖a‖lp + λ2‖β‖lp

}
s.t.
∑
ai = 1

(11)

where β = [β1; ...;βk; ...;βK ] and βk is the sub-vector of
coefficients associated with Dk. Based on our experimental
results, compressing Xk into Dk significantly improve the
speed with almost the same ISFR rate.

Either l1-norm or l2-norm can be used to regularize a and β,
while l1-regularization will lead to sparser solutions but with
more computational cost. Like in l1-SVM [48] and SRC [31],
sparsity can enhance the classification rate if the features are
not informative enough. Note that if the query set Y has only
one sample, then a = 1 and the proposed model in Eq. (11)

will be reduced to the SRC (for l1-regularization) or CRC (for
l2-regularization) scheme. Next, we present the optimization of
l2-norm and l1-norm regularized hull based ISCRC in Section
III-B and Section III-C, respectively.

B. l2-norm regularized hull based ISCRC

When l2-norm is used to regularize a and β, the problem in
Eq. (11) has a closed-form solution. The Lagrangian function
of Eq. (11) becomes

L(a,β, λ3) = ‖Y a−Dβ‖22 + λ1 ‖a‖22 + λ2 ‖β‖22
+λ3(ea− 1)

=

∥∥∥∥[Y −D]

[
a
β

]∥∥∥∥2
2

+
[
aT βT

] [ λ1I 0
0 λ2I

] [
a
β

]
+λ3([e 0]

[
a
β

]
− 1)

(12)

where e is a row vector whose elements are 1.

Let z =

[
a
β

]
, A = [Y −D], B =

[
λ1I 0
0 λ2I

]
and

d = [e 0]
T . Then Eq. (12) becomes:

L(z, λ3) = z
TATAz + zTBz + λ3(d

Tz − 1) (13)

There are

∂L

∂λ3
= dTz − 1 = 0 (14)

∂L

∂z
= ATAz +Bz + λ3d = 0 (15)

According to Eq. (14) and Eq. (15), we get the closed form
solution to Eq. (12):

ẑ =

[
â

β̂

]
= z0/d

Tz0 (16)

where z0 = (ATA+B)−1d.
After â and β̂ are got, the distance between query set Y

and a gallery set Xk is calculated as rk =
∥∥∥Y â−Dkβ̂k

∥∥∥2
2
,

and then the class label of Y is determined by Eq. (5). For
RH-ISCRC-l2, the main time consumption is to solve the
inverse of matrix (ATA+B). Hence, the time complexity
of RH-ISCRC-l2 is O((na + nβ)

3
), where na is the number

of sample images in Y and nβ is the number of atoms in D.
The CRNP method [26] also collaboratively represents the

query set over the gallery sets. The differences between the
proposed RH-ISCRC-l2 and CRNP lie in the optimization pro-
cedure and the classification rule. RH-ISCRC-l2 has a closed-
form solution while CRNP adopts the same optimization
method as RNP [24], which iteratively converges to the global
optimal solution. Besides, CRNP uses the same classification
rule as RNP, which utilizes both the reconstruction error
and rank of image set matrix. RH-ISCRC-l2 only uses the
reconstruction error for classification.
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C. l1-norm regularized hull based ISCRC

When l1-norm regularization is used, we use the alternating
minimization method, which is very efficient to solve multiple
variable optimization problems [49]. For Eq. (11), we have the
following augmented Lagrangian function:

L(a,β, λ) = ‖Y a−Dβ‖22 + λ1‖a‖1 + λ2‖β‖1
+ < λ, ea− 1 > +γ

2 ‖ea− 1‖22
(17)

where λ is the Lagrange multiplier, 〈·, ·〉 is the inner product,
and γ > 0 is the penalty parameter.

Then a and β are optimized alternatively with the other one
fixed. More specifically, the iterations of minimizing a go as
follows:

a(t+1) = argminaL(a,β
(t), λ(t))

= argminaf(a) +
γ
2

∥∥ea− 1 + λ(t)/γ
∥∥2
2

= argmina

∥∥∥Ỹ a− x∥∥∥2
2
+ λ1‖a‖1

(18)

where f(a) =
∥∥Y a−Dβ(t)

∥∥2
2

+ λ1‖a‖lp , Ỹ =[
Y ; (γ/2)

1/2
e
]
, x = [Dβ(t); (γ/2)1/2(1− λ(t)/γ)].

The problem in Eq. (18) can be easily solved by some
representative l1-minimization approaches such as LARS [50].

After a(t+1) is updated, β(t+1) can be obtained by solving
another l1-regularized optimization problem:

β(t+1) = argminβL(a
(t+1),β, λt)

= argminβ
∥∥Y a(t+1) −Dβ

∥∥2
2
+ λ2‖β‖1

(19)

Once a(t+1) and β(t+1) are got, λ is updated as follows:

λ(t+1) = λ(t) + γ
(
ea(t+1) − 1

)
(20)

The algorithm of RH-ISCRC-l1 for ISFR is summarized in
Table II and it converges. The problem in Eq. (17) is convex,
and the subproblems in Eq. (18) and Eq. (19) are convex
and can be solved using the LARS algorithm. It had been
shown in [51], for the general convex problem, the alternating
minimization approach would converge to the correct solution.
One curve of the objective function value of RH-ISCRC-l1
versus the iteration number is shown in Fig. 6. Honda/USCD
database [14] is also used. The query set Y and each gallery
set Xk has 200 frames. Note that one image set is acquired
from one video clip and there is no intersection between the
query set and each gallery set. We compress each set Xk

into a dictionary Dk with 20 atoms by using the metaface
learning method [47]. Since there are 20 gallery sets, the set
D = [D1, ...,Dk, ...,D20] has 20 × 20=400 atoms. From the
figure we can see that RH-ISCRC-l1 converges after about five
iterations.

Since the complexity of sparse coding is O(m2nε), where
m is the feature dimension, n is the atom number and ε ≥ 1.2
[52], we can get that the time complexity of RH-ISCRC-l1 is
O(lm2(na

ε + nβ
ε)), where na is the number of samples in

Y , nβ is the number of atoms in D and l is the iteration
number.
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Fig. 6. Convergence of RH-ISCRC-l1.

TABLE II
ALGORITHM OF RH-ISCRC FOR ISFR

Input: query set Y ; gallery sets X = [X1, ...,Xk, ...,XK ], λ1 and λ2.
Output: the label of query set Y .
Initialize β(0), λ(0) and 0← t.
Compress Xk to Dk , k = 1, 2, ...,K using metaface learning [47].
While t < max num do

Step 1: Update a by Eq. (18);
Step 2: Update β by Eq. (19);
Step 3: Update λ by Eq. (20);
Step 4: t← t+ 1.

End while

Compute rk =
∥∥Y â−Dkβ̂k

∥∥2
2

, k = 1, 2, ...K.

Identity(Y )=argmink{rk}.

D. Examples and discussions

Let’s use an example to better illustrate the classification
process of RH-ISCRC. We use the Honda/USCD database
[14]. The experiment setting is the same as Fig. 6. By Eq.
(11), the computed coefficients in a and β are plotted in
Fig. 7 (by l1-regularization) and Fig. 8 (by l2-regularization),
respectively. The highlighted coefficients in the figures are
associated with set X10, which has the same class label as
Y . Clearly, these coefficients are much more significant than
the coefficients associated with the other classes. Meanwhile,
from Fig. 7 and Fig. 8 we can see that l1-regularized hull
based CRSSD leads to sparser a and β, implying that only
few samples are dominantly involved in representation and
classification.
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Fig. 7. The coefficient vectors â (of Y ) and β̂ (of D) by l1-regularized hull
based CRSSD.

In Fig. 9, we show the reconstructed faces by Y â with
l1-regularized hull based CRSSD. The distances between Y â
and each Dkβ̂k, i.e., rk, are also given. We see that r10 is
0.03, which is the minimal one among all the gallery sets,
meaning that ISCRC will make the correct recognition. Here
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Fig. 8. The coefficient vectors â (of Y ) and β̂ (of D) by l2-regularized hull
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.

the relationships between ISCRC and manifold based methods
can be revealed. MMD assumes that an image set can be
modeled as a set of local subspaces so that the image set
distance is defined as the weighted average distance between
any two local subspaces [4]. The distance between two local
subspaces is related to the cluster exemplar and principle
angel. Correspondingly, ISCRC seeks for a local subspace
(Y â) in the query image set and a local subspace (Dβ̂) in
all the gallery sets, as shown in Fig. 7 . In classification, the
distance between the query set and the template set of the kth

class is the distance between the local subspace (Y â) and the
local subspace Dkβ̂k.

IV. KERNELIZED CONVEX HULL BASED ISCRC
We then focus on how to compute the convex hull based

CRSSD in Eq. (6) and use it for ISCRC. Since there can be
many sample images in gallery sets, X can be a fat matrix
(note that usually we use a low dimensional feature vector
to represent each face image). Even we compress X into a
more compact setD, the system can still be under-determined.
In Section 3 we imposed the lp-norm regularization on a
and b to make the solution stable. When the convex hull is
used, however, the constraint may not be strong enough to
get a stable solution of Eq. (6). In addition, if the underlying
relationship between the query set and gallery sets is highly
nonlinear, it is difficult to approximate the hull of query set
as a linear combination of gallery sets.

One simple solution to solving both the above two problems
is the kernel trick; that is, we can map the data into a higher
dimensional space where the subjects can be approximately
linearly separable. The mapped gallery data matrix in the high-
dimensional space will be generally over-determined. In such

a case, the convex hull constraint will be strong enough for
a stable solution. The kernelized convex hull based CRSSD
model is:

mina,β ‖φ(Y )a− [φ(D1), φ(D2), ..., φ(DK)]β‖2
s.t.
∑
ai = 1,

∑
βj = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,
0 ≤ βj ≤ τ, j = 1, ..., nβ .

(21)

The above minimization can be easily solved by the stan-
dard quadratic optimization (QP [53]) method. The solution
exhibits global and quadratic convergence, as proved in [53].
Different kernel functions can be used, e.g., linear kernel and
Gaussian kernel. We call the corresponding method kernelized
convex hull based ISCRC, denoted by KCH-ISCRC. The
classification rule is the same as RH-ISCRC with rk =∥∥∥φ(Y )â− φ(Dk)β̂k

∥∥∥ 2
2. As convex hull based CRSSD is to

solve a convex QP problem, the time complexity of KCH-
ISCRC is O((nβ + na)

3), which is similar to SVM. The
algorithm of KCH-ISCRC is given in Table III. To reduce
the computational cost, the kernel matrix k(D,D) can be
computed and stored. When a query set Y comes, we only
need to calculate k(Y ,Y ) and k(Y ,D).

TABLE III
ALGORITHM OF KCH-ISCRC FOR ISFR

Input: query set Y ; gallery sets X = [X1, ...,Xk, ...,XK ], τ .
Output: the label of query set Y .
Compress Xk to Dk , k = 1, 2, ...,K by metaface learning [24];
Solve the QP problem in Eq. (21);
Compute rk =

∥∥φ(Y )â− φ(Dk)β̂k

∥∥ 2
2, k = 1, 2, ...K;

Identity(Y )=argmink{rk}.

Like in Fig. 7 and Fig. 8, in Fig. 10 we show the coefficient
vectors â and β̂ solved by Eq. (21). The Gaussian kernel is
used and the experimental setting is the same as that in Figs. 7
and 8 (the only difference is that each compressed gallery set
Dk has 50 atoms). We can see that the coefficients associated
with gallery set D10 are larger than the other gallery sets,
resulting in a smaller representation residual and hence the
correct recognition.
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Fig. 10. The coefficient vectors â (of Y ) and β̂ (of D) by kernelized convex
hull based CRSSD.

V. EXPERIMENTAL ANALYSIS

We used the Honda/UCSD [14], CMU Mobo [54], and
Youtube Celebrities [55] datasets to test the performance of
the proposed method. The comparison methods fall into four
categories:
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C1. Subspace and manifold based methods: Mutual Subspace
Method (MSM) [1], Discriminant Canonical Correlations
(DCC2) [11], Manifold-Manifold Distance (MMD3) [4],
and Manifold Discriminant Analysis (MDA4) [12].

C2. Affine/convex hull based methods: Affine Hull based
Image Set Distance (AHISD5) [5], Convex Hull based
Image Set Distance (CHISD6) [5], Sparse Approximated
Nearest Points (SANP7) [8], and Regularized Nearest
Points (RNP) [24].

C3. Representation based methods: Sparse Representation
based Classifier (SRC) [31], Collaborative Representa-
tion based Classifier (CRC) [32]. We tested to use the
average and minimal representation residual of query set
for classification and found that average residual works
better. Hence in this paper, the average residual is used
in SRC/CRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [56], KCRC (Ker-
nel CRC) [35], AHISD [5], and CHISD [5]. For KSRC
and KCRC, the average residual is used for classification.

For the proposed methods, RH-ISCRC is compared with
those non-kernel methods and KCH-ISCRC is compared with
those kernel methods.

A. Parameter setting

For competing methods, the important parameters were
empirically tuned according to the recommendations in the
original literature for fair comparison. For DCC [11], if there
is only one set per class, then the training set is divided into
two sets since at least two sets per class are needed in DCC.
For MMD, the number of local models is set following the
work in [4]. For MDA, there are three parameters, i.e., the
number of local models, the number of between-class NN local
models and the subspace dimension. The three parameters
are configured according to the work in [12]. For SANP, we
adopted the same parameters as [8]. For SRC, CRC, KSRC
and KCRC, λ that balances the residual and regularization
is tuned from [0.01, 0.001, 0.0001]. For AHISD and CHISD,
C is set as 100. For all kernel methods, Gaussian kernel
(k(x, y) = exp(−‖x− y‖22 /2δ2)) is used, and δ is set as
5. The experiments of 50 frames, 100 frames and 200 frames
per set are conducted on the three databases. If the number of
samples in the set is less than the given number, then all the
samples in the set are used.

For the proposed RH-ISCRC, we set λ1 = 0.001, λ2 =
0.001, λ = 2.5/na (na is the number of samples in the query
set), γ = λ/2. The number of atoms in the compressed set
Dk is set as 20 on Honda/UCSD and 10 on CMU MoBo and
YouTube. For KCH-ISCRC, τ = 1 and the number of atoms
in each Dk is set as 50 for all datasets. The sensitivity of the
proposed methods to parameters will be discussed in Section
V-F.

2http://www.iis.ee.ic.ac.uk/ tkkim/code.htm
3http://www.jdl.ac.cn/user/rpwang/research.htm
4http://www.jdl.ac.cn/user/rpwang/research.htm
5http://www2.ogu.edu.tr/ mlcv/softwareimageset.html
6http://www2.ogu.edu.tr/ mlcv/softwareimageset.html
7https://sites.google.com/site/yiqunhu/cresearch/sanp

B. Honda/UCSD

The Honda/UCSD dataset consists of 59 video sequences
involving 20 different subjects [14]. The Viola-Jones face
detector [57] is used to detect the faces in each frame and
resize the detected faces to 20×20 images. Some examples
of Honda/UCSD dataset are shown in Figure 11. Histogram
equalization is utilized to reduce the illumination variations.
Our experiment setting is the same as [14][8]: 20 sequences
are set aside for training and the remaining 39 sequences for
testing. The intensity is used as the feature.

Fig. 11. Some examples of Honda/UCSD dataset

TABLE IV
RECOGNITION RATES ON HONDA/UCSD (%)

Non-kernel 50 100 200 Year
MSM [1] 74.36 79.49 89.74 1998
DCC [11] 76.92 84.62 94.87 2007
MMD [4] 69.23 87.18 94.87 2008
MDA [12] 82.05 94.87 97.44 2009
SRC [31] 84.62 92.31 92.31 2009

AHISD [5] 82.05 84.62 89.74 2010
CHISD [5] 82.05 84.62 92.31 2010
SANP [8] 84.62 92.31 94.87 2011
CRC [32] 84.62 94.87 94.87 2011
RNP [24] 87.18 94.87 100.0 2011

RH-ISCRC-l1 89.74 97.44 100.0
RH-ISCRC-l2 89.74 97.44 100.0

Kernel 50 100 200 Year
AHISD [5] 84.62 84.62 82.05 2010
CHISD [5] 84.62 87.18 89.74 2010
KSRC [56] 87.18 97.44 97.44 2009
KCRC [35] 82.05 94.87 94.87 2012

KCH-ISCRC 89.74 94.87 100.0

The experimental results are listed in Table IV. We can
see that for those non-kernel methods, the proposed RH-
ISCRC outperforms much all the other methods. Note that
in [5], kernel CHISD achieves 100% recognition accuracy
when all the frames in one video clip are used. In this paper,
following the experiment setting of SANP [8], we reported
the accuracy using different number of frames per set. When
200 frames per set are used, both RH-ISCRC and KCH-
ISCRC achieve 100% accuracy, which shows the superiority
to CHISD and AHISD. For the kernel based method, the
proposed KCH-ISCRC performs the best except for the case
when 100 frames per set are used. We can also see that on this
dataset, RH-ISCRC-l1 and RH-ISCRC-l2 achieve the same
recognition rate, which implies that on this dataset the l2-norm
regularization is strong enough to yield a good solution to the
regularized hull based CRSSD in Eq. (11).
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C. CMU MoBo

The CMU Mobo8 (Motion of Body) dataset [54] was
originally established for human pose identification and it
contains 96 sequences from 24 subjects. Four video sequences
are collected per subject, each of which corresponds to a
walking pattern. Again, the Viola-Jones face detector [57] is
used to detect the faces and the detected face images are
resized to 40 × 40. The LBP feature is used, which is the
same as the work in [5] and [8].

One video sequence per subject is selected for training
while the rest are used for testing. Ten-fold cross validation
experiments are conducted and the average recognition results
are shown in Table V. We can clearly see that the proposed
methods outperform the other methods under different frames
per set. On this dataset and the Honda/UCSD dataset, the
proposed non-kernel RH-ISCRC and the kernel based KCH-
ISCRC have similar ISFR rates.

TABLE V
RECOGNITION RATES ON CMU MOBO(%)

Non-kernel 50 100 200 Year
MSM [1] 84.3 ± 2.6 86.6±2.2 89.9±2.4 1998
DCC [11] 82.1± 2.7 85.5±2.8 91.6±2.5 2007
MMD [4] 86.2 ±2.9 94.6±1.9 96.4±0.7 2008
MDA [12] 86.2 ±2.9 93.2±2.8 95.8±2.3 2009
SRC [31] 91.0 ±2.1 91.8±2.7 96.5±2.5 2009

AHISD [5] 91.6 ±2.8 94.1±2.0 91.9±2.6 2010
CHISD [5] 91.2 ±3.1 93.8±2.5 96.0±1.3 2010
SANP [8] 91.9 ±2.7 94.2±2.1 97.3±1.3 2011
CRC [32] 89.6 ±1.8 92.4±3.7 96.4±2.8 2011
RNP [24] 91.9 ±2.5 94.7±1.2 97.4±1.5 2013

RH-ISCRC-l1 93.5±2.8 96.5±1.9 98.7±1.7
RH-ISCRC-l2 93.5±2.8 96.4±1.9 98.4±1.7

Kernel 50 100 200 Year
AHISD [5] 88.9±1.7 92.4±2.8 93.5±4.2 2010
CHISD [5] 91.5±2.0 93.4±4.0 97.4±1.9 2010
KSRC [56] 91.6 ±2.8 94.1±2.0 96.8±2.0 2010
KCRC [35] 91.2 ±3.1 93.4±2.9 96.6±2.6 2012

KCH-ISCRC 94.2 ±2.1 96.4±2.3 98.4±1.9

D. YouTube Celebrities

The YouTube Celebrities9 is a large scale video dataset
collected for face tracking and recognition, consisting of 1,910
video sequences of 47 celebrities from YouTube [55]. As
the videos were captured in unconstrained environments, the
recognition task becomes much more challenging due to the
larger variations in pose, illumination and expressions. Some
examples of YouTube Celebrities dataset are shown in Figure
12. The face in each frame is also detected by the Viola-Jones
face detector and resized to a 30 × 30 gray-scale image. The
intensity value is used as feature. The experiment setting is
the same as [8], [12], [18]. Three video sequences per subject
are selected for training and six for testing. Five-fold cross
validation experiments are conducted.

The experimental results are shown in Table VI. It can
be seen that among the non-kernel methods, the proposed

8http://www.ri.cmu.edu/publication view.html?pub id=3904
9http://seqam.rutgers.edu/site/index.php?option=com content&view=article&id
=64&Itemid=80

Fig. 12. Some examples of YouTube Celebrities dataset

RH-ISCRC-l1 achieves the highest recognition rate, while
among the kernel based methods, the proposed KCH-ISCRC
performs the best. Since this Youtube Celebrities dataset
was established under uncontrolled environment, there are
significant variations among the query and gallery sets, and
therefore the l1-regularization is very helpful to improve the
stability and discrimination of the solution to Eq. (11). As a
consequence, RH-ISCRC-l1 leads to much better results than
RH-ISCRC-l2 on this dataset. On the other hand, the kernel
based KCH-ISCRC leads to better results than RH-ISCRC in
this experiment. Besides, the number of frames per set also
affect the performance of ISCRC. When number of frames is
small, the improvement by ISCRC is more significant.

TABLE VI
RECOGNITION RATES ON YOUTUBE (V1 %)

Non-kernel 50 100 200 Year
MSM [1] 54.8±8.7 57.4±7.7 56.7±6.9 1998
DCC [11] 57.6±8.0 62.7±6.8 65.7±7.0 2007
MMD [4] 57.8±6.6 62.8±6.2 64.7±6.3 2008
SRC [31] 61.5±6.9 64.4±6.8 66.0±6.7 2009
MDA [12] 58.5±6.2 63.3±6.1 65.4±6.6 2009
AHISD [5] 57.5±7.9 59.7±7.2 57.0±5.5 2010
CHISD [5] 58.0±8.2 62.8±8.1 64.8±7.1 2010
SANP [8] 57.8±7.2 63.1±8.0 65.6±7.9 2011
CRC [32] 56.5±7.4 59.5±6.6 61.4±6.4 2011
RNP [24] 59.9 ±7.3 63.3±8.1 64.4±7.8 2013

RH-ISCRC-l1 62.3±6.2 65.6±6.7 66.7±6.4
RH-ISCRC-l2 57.4±7.2 60.7±6.5 61.4±6.4

Kernel 50 100 200 Year
AHISD [5] 57.2±7.5 59.6±7.4 61.8±7.3 2010
CHISD [5] 57.9±8.3 62.6±8.1 64.9±7.2 2010
KSRC [56] 61.4±7.0 65.9±6.9 67.8±6.4 2010
KCRC [35] 57.5±7.9 60.6±6.8 62.7±7.7 2012

KCH-ISCRC 64.5±7.6 67.4±8.0 69.7±7.4

E. Time comparison

Then let’s compare the efficiency of competing methods.
The Matlab codes of all competing methods are obtained from
the original authors, and we run them on an Intel(R) Core(TM)
i7-2600K (3.4GHz) PC. The average running time per set on
CMU MoBo (200 frames per set) is listed in Table VII. We
can see that the proposed RH-ISCRC-l2 is the fastest among
all competing methods except for RNP, while RH-ISCRC-l1
also has a fast speed. Among all the kernel based methods,
the proposed KCH-ISCRC is much faster than others. Overall,
the proposed RH-ISCRC and KCH-ISCRC methods have not
only high ISFR accuracy but also high efficiency than the
competing methods.
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TABLE VII
AVERAGE RUNNING TIME PER SET ON CMU MOBO (s)

Non-kernel Time Kernel Time
MSM [1] 0.338 AHISD [5] 18.546
DCC [11] 0.349 CHISD [5] 18.166
MMD [4] 3.216 KSRC [56] 35.508
SRC [31] 5.301 KCRC [35] 6.543
MDA [12] 2.035 KCH-ISCRC 2.03
AHISD [5] 31.365
CHISD [5] 18.029
SANP [8] 11.124
CRC [32] 0.684
RNP [24] 0.113

RH-ISCRC-l1 0.788
RH-ISCRC-l2 0.280

F. Parameter sensitivity analysis

To verify if the proposed methods are sensitive to param-
eters, in this section we present the recognition accuracies
with different parameter values. For RH-ISCRC, there are
two parameters, λ1 and λ2 in Eq. (17), which need to be
set. For KCH-ISCRC, there is only one parameter τ in Eq.
(5). We show the recognition accuracies versus the parameters
on the CMU MoBo dataset in Fig. 13, Fig. 14 and Fig.
15, respectively, for RH-ISCRC-l1, RH-ISCRC-l2 and KCH-
ISCRC. The different colors correspond to different accura-
cies, as shown in the color bar. λ1 and λ2 are selected from
{0.0005, 0.001, 0.01, 0.05}. In Fig. 13 and Fig. 14, the top sub-
figure is for 50 frames per set, the middle is for 100 frames per
set and the bottom corresponds to 200 frames per set. From
Fig. 13, we can see that the accuracy of RH-ISCRC-l1 is very
stable when λ1 varies from 0.0005 to 0.05 and λ2 varies from
0.0005 to 0.01. When λ2 is increased to 0.05, the recognition
performance would degrade. Fig. 14 shows that RH-ISCRC-
l2 is insensitive to the values of λ1 and λ2. For example, in
the experiments of 100 and 200 frames per set, the accuracy
variation is within 0.5% for different λ1 and λ2. Considering
the performance of both RH-ISCRC-l1 and RH-ISCRC-l2, λ1
and λ2 can both be set as 0.001. With this parameter setting,
the accuracy is very stale in different experiments. For KCH-
ISCRC, its recognition accuracies with different values of τ
are shown in Fig. 15. τ is set as {1, 2, 5, 10, 50, 100}. One can
see that KCH-ISCRC is insensitive to τ . Hence, we simply set
τ as 1.

The dictionary learning technique is used in our method to
compress each image set to reduce the time complexity when
representing a query image set. The number of atoms in the
dictionary needs to be defined before dictionary learning. If
the number of atoms is too small, the representation power of
the dictionary will be reduced; if the number of atoms is large,
the system tends to be under-determined and thus the solution
may be less stable. We tested our algorithm by varying the
number of atoms (for each sub-dictionary Dk) from 5 to 50.
The recognition accuracies versus the number of atoms on
the CMU MoBo dataset are shown in Figs. 16-18. From Fig.
16 and Fig. 17, we can see that the recognition accuracies of
both RH-ISCRC-l1 and RH-ISCRC-l2 vary little if the number
of atoms is set within [10, 20]. From Fig. 18, we can see
that for KCH-ISCRC the variation of recognition accuracies is

within 0.5% under different number of atoms. This is because
the feature dimension is relatively high in the kernel space
and thus the solution is affected little by the dictionary size.
Based on the above observation, in all our experiments we
set the number of atoms as 10 or 20 for RH-ISCRC-l1 and
RH-ISCRC-l2, and 50 for KCH-ISCRC.
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Fig. 13. Recognition accuracy of RH-ISCRC-l1 on CMU MoBo with different
λ1 and λ2. Different colors represent different accuracy. Top: 50 frames per
set; middle: 100 frames per set; bottom: 200 frames per set.
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Fig. 14. Recognition accuracy of RH-ISCRC-l2 on CMU MoBo with different
λ1 and λ2. Different colors represent different accuracy. Top: 50 frames per
set; middle: 100 frames per set; bottom: 200 frames per set.
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Fig. 15. Recognition accuracy of KCH-ISCRC on CMU MoBo with different
τ .

VI. CONCLUSION

We proposed a novel image set based collaborative rep-
resentation and classification (ISCRC) scheme for image set
based face recognition (ISFR). The query set was modeled
as a convex or regularized hull, and a collaborative repre-
sentation based set to sets distance (CRSSD) was defined by
representing the hull of query set over all the gallery sets. The
CRSSD considers the correlation and distinction of sample
images within the query set and the relationship between the
gallery sets. With CRSSD, the representation residual of the
hull of query set by each gallery set can be computed and
used for classification. Experiments on the three benchmark
ISFR databases showed that the proposed ISCRC is superior
to state-of-the-art ISFR methods in terms of both recognition
rates and efficiency.
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number of atoms per set.
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