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Abstract

Most of the previous sparse coding (SC) based super res-
olution (SR) methods partition the image into overlapped
patches, and process each patch separately. These method-
s, however, ignore the consistency of pixels in overlapped
patches, which is a strong constraint for image reconstruc-
tion. In this paper, we propose a convolutional sparse cod-
ing (CSC) based SR (CSC-SR) method to address the con-
sistency issue. Our CSC-SR involves three groups of pa-
rameters to be learned: (i) a set of filters to decompose the
low resolution (LR) image into LR sparse feature maps; (ii)
a mapping function to predict the high resolution (HR) fea-
ture maps from the LR ones; and (iii) a set of filters to recon-
struct the HR images from the predicted HR feature maps
via simple convolution operations. By working directly on
the whole image, the proposed CSC-SR algorithm does not
need to divide the image into overlapped patches, and can
exploit the image global correlation to produce more ro-
bust reconstruction of image local structures. Experimental
results clearly validate the advantages of CSC over patch
based SC in SR application. Compared with state-of-the-art
SR methods, the proposed CSC-SR method achieves highly
competitive PSNR results, while demonstrating better edge
and texture preservation performance.

1. Introduction

The purpose of super-resolution (SR) is to reconstruct a
high resolution (HR) image from a single low resolution (L-
R) image or a sequence of LR images. SR provides a way
to overcome the inherent resolution limitations of low-cost
imaging sensors, and it also offers a solution to enhance the
existing images which were generated by old type imaging

∗This research is supported by the HK RGC GRF grant
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equipment. Compared with SR from a sequence of images,
single image SR (SISR) is more ill-posed because less in-
formation is provided. A key issue of single image SR is
to build the relationship between the LR image and the HR
image. Since information was lost in the down-sampling
procedure, prior knowledge is needed to provide extra in-
formation for estimating the HR image. In the early years
of studies, some simple smooth assumptions were utilized
to estimate the missing pixels of the HR image, and dif-
ferent analytical interpolation methods have been proposed
to zoom up LR images. However, such kind of simple s-
mooth assumptions are far from enough for reconstructing
complex structures in natural images.

The pioneer work in [8] proposed to use an external
dataset and Markov random field (MRF) to model the im-
age priors. Inspired by [8], many methods have been de-
veloped to model prior knowledge on local structures or
patches using natural images [4, 7, 19, 29]. Methods in
[7, 18, 19] learn the gradient distribution from high qual-
ity natural images to guide the HR estimation in the testing
phase. Considering that natural images are complex and lo-
cally structured, instead of modeling the prior on the entire
image, most SISR methods utilize the prior knowledge on
image patches, which can be further grouped into three cate-
gories: example-based, mapping-based, and sparse coding-
based methods. For example-based methods, both the ex-
ternal [3, 8, 27] dataset and internal cross-scale relationship
[9] can be employed to provide examples of the LR and HR
patch pairs. For mapping-based methods, mapping func-
tion between the LR and HR images is directly learned us-
ing the LR/HR patch pairs to implicitly incorporate prior
knowledge [5, 6, 26, 11]. For sparse coding-based methods,
motivated by the progress of sparse coding and dictionary
learning, a couple of dictionaries are trained for LR and HR
image patches, and several approaches have been suggested
to model the relationship between the LR and HR patches
in the coding vector domain [12, 22, 29].
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Although patch based methods can greatly reduce the
problem size and obtain state-of-the-art performance in SIS-
R [25], previous studies usually process the overlapped
patches independently, and the final results are achieved by
averaging the overlapped pixels between each patch. It is
commonly accepted that more overlapped pixels between
neighboring patches will deliver better reconstruction re-
sults since each pixel in the output image will be estimat-
ed for more times. However, such an “overlap-averaging”
mechanism ignores an important constraint in solving the
patch estimation problem, i.e., pixels in the overlapped area
of adjacent patches should be exactly the same (i.e., consis-
tent). The consistency constraint provides prior information
in dealing with each single estimation problem. Actually, in
the seminal work of [8] the consistency prior is modeled by
an MRF to select HR patches in the external database. Re-
cently, researchers [13, 36] have proposed several elegant
aggregation methods to alleviate the inconsistency of over-
lapped patches, and achieved significant performance im-
provement in image denoising. However, for SISR, more
evidences and better approaches are still required to justify
the importance of consistency constraint.

In this paper, we present a convolutional sparse coding
(CSC) based SR method to demonstrate the effectiveness
of consistency constraint and the advantage of global image
based CSC over conventional patch based sparse coding.
CSC was first proposed by Zeiler et al. [31]. Instead of s-
parsely representing a vector by the linear combination of
dictionary atoms, CSC decomposes the input image into N
sparse feature maps by N filters. The convolutional decom-
position avoids dividing the whole image into overlapped
patches and can naturally utilize the consistency prior in the
decomposition procedure. CSC has been utilized in several
works to extract features from images for object recognition
[32]. However, compared with the great success of conven-
tional patch based sparse coding, no work has been reported
that CSC can achieve state-of-the-art performance in image
reconstruction. In [2], extending the original patch based
SC method to CSC for SR has been proposed as a potential
application of CSC, but the authors only sketched out the
idea and did not provide implementation details and exper-
imental results. In [16], the author proposed to use a con-
volutional neural network (CNN) to approximate the CSC
model for SR, the model is actually a CNN based SR model
and the authors also did not compare the proposed method
with state-of-the-art SR algorithms.

Previous joint dictionary learning methods encode de-
compose the interpolated LR image and use the correspond-
ing HR dictionary to reconstruct the HR estimation. The LR
and HR dictionaries have the same number of atoms. This
scheme interpolation operation before sparse coding greatly
increases the computation burden because we need to en-
code the interpolated image which has the same size of HR

image. Furthermore, using the same number of atoms in the
LR and HR dictionaries may limit the representation capac-
ity of HR dictionary since HR images are much more com-
plex than LR images. To address these problems, we use
LR and HR filter groups which have different filter number-
s and sizes to decompose and reconstruct the LR and HR
images. A transformation mapping function is introduced
to build the relationship between the LR and HR feature
maps which have different sizes both in the spatial and co-
efficient domain. Such a mechanism not only reduces the
computation burden of convolutional sparse coding in the
LR image decomposition step, but also improves the repre-
sentation capacity of HR filters to ensure the performance
of our algorithm.

The contribution of this paper is three-fold. First, we
show that compared with conventional sparse coding meth-
ods which process each overlapped patch independently, the
global decomposition strategy in CSC is more suitable for
image reconstruction. This may trigger new discussions on
the commonly used overlapped patch dividing mechanism.
Second, to take full advantage of the feature maps generated
by the convolutional coding, we utilize the feature space in-
formation to train a sparse mapping function. Such a mech-
anism reduces the number of filters used to decompose the
LR input image, and avoids performing sparse decomposi-
tion on the large interpolated image, greatly reducing the
computation burden of convolutional sparse decomposition
in the testing phase. Third, our experiments on commonly
used test images show that the proposed method achieves
very competitive SR results with the state-of-the-art meth-
ods not only in PSNR index, but also in visual quality.

2. Convolutional Sparse Coding

2.1. Sparse Coding for Super Resolution

Sparse representation encodes a signal vector x as the
linear combination of a few atoms in a dictionary D, i.e.,
x ≈ Dα, where α is the sparse coding vector. By far, s-
parse representation has achieved state-of-the-art results in
various computer vision tasks [15, 24, 30]. As for single
image super-resolution (SISR), Yang et al. first proposed a
sparse coding super resolution (ScSR) method in [29]. In
the training phase, given a group of low resolution (LR)
and high resolution (HR) training patch pairs, ScSR aim-
s to jointly learn an HR dictionary Dh and an LR dictio-
nary Dl to reconstruct the HR and LR patches by assuming
that each LR/HR patch pair shares the same sparse coding
vector. In the testing phase, the input LR image is divided
into overlapped patches, and each patch is encoded by the
LR dictionary Dl with the sparse coefficient α. The corre-
sponding HR patch is reconstructed by Dh and α with Dhα.
Finally, the HR image can be obtained by aggregating all
the estimated HR patches into a whole image.
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Inspired by ScSR [29], many sparse coding and dictio-
nary learning based methods have been proposed for SISR.
By relaxing the constraint that the LR/HR patch pair has the
same coding vector, Wang et al. [22] introduced a transfor-
m matrix to allow more complex relationship between the
HR and LR coding vectors, and proposed a semi-coupled
dictionary learning (SCDL) method for SISR. Subsequent-
ly, more complex models have been proposed for better
modeling the relationship between the LR and HR spaces
with coupled dictionaries. He et al. [12] utilized a non-
parametric Bayesian approach to learn dictionaries to build
relationship between the LR and HR spaces. Peleg and E-
lad [17] proposed a statistical model which uses restricted
Boltzmann machine (RBM) to model the relationship be-
tween the LR and HR coding vectors. Zhu et al. [35] sug-
gested to enhance the flexibility of the HR dictionary by
permitting certain deformation in each HR patch.

2.2. Convolutional Sparse Coding (CSC)

Despite its wide applications, sparse coding on an image
patch has some drawbacks. First, the scalability of the `0
or `1 optimization is poor, which limits the application of
sparse coding in large scale problems. Second, most of the
previous sparse coding based methods partition the whole
image into overlapped patches to reduce the burden of mod-
eling and computation. However, the consistency between
overlapped patches is ignored and the existing aggregation
and averaging strategies can only alleviate this problem.

To take consistency into account, Zeiler et al. [31] pro-
posed a convolutional implementation of sparse coding to
sparsely encode the whole image. Instead of decomposing
a signal vector as the multiplication of dictionary matrix and
coding vector, the so-called convolutional sparse coding (C-
SC) model represents an image as the summation of convo-
lutions of the feature maps and the corresponding filters:

minZ‖X−
∑N

i=1
f i ⊗ Zi ‖2F +λ

∑N

i=1
‖Zi ‖1, (1)

where X is an m× n input image, {f i}i=1,2,...,N is a group
of s × s filters, and Zi is the feature map corresponding
to f i with size (m + s − 1) × (n + s − 1). In the CSC
model, each feature map Zi has nearly the same size as X.
The reconstruction is obtained by a summation (instead of
averaging in patch-based model) of the convolution outputs
f i ⊗ Zi. Thus, the inconsistency problem in patch based
implementation is avoided.

On the other hand, the convolutional decomposition
mechanism also brings some difficulties in optimization.
Zeile et al. [31] adopted the continuation method to relax
the equality constraints, and employed the conjugate gra-
dient (CG) decent to solve the convolutional least square
approximation problem. Bristow et al. [1] proposed a fast
CSC algorithm by considering the property of block circu-
lant with circulant block (BCCB) matrix in the Fourier do-
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Figure 1. Flowchart of the proposed algorithm.

main. Recently, Wohlberg [23] further improved this algo-
rithm and proposed an efficient alternating direction method
of multipliers (ADMM) for CSC.

Despite the study of fast algorithms to solve the CSC
problem, little attention was given on validating the advan-
tages of CSC over conventional patch based sparse coding
for image reconstruction. Can CSC really benefit image re-
construction? In this work, we attempt to answer this ques-
tion and develop an effective CSC based SISR algorithm.

3. Convolutional Sparse Coding for Super Res-
olution

In this section, we present our convolutional sparse cod-
ing based super-resolution (CSC-SR) method. Like most
existing SISR methods, the proposed CSC-SR method also
involves a training phase and a testing phase. In the training
phase, we learn three groups of parameters: (i) LR filters;
(ii) the mapping function between LR and HR feature maps;
and (iii) HR filters. In the testing phase, the input LR image
is first decomposed into sparse LR feature maps by using
the learned LR filters. Then, the mapping function is em-
ployed to estimate HR feature maps from LR feature maps,
and the HR image is reconstructed by simple convolution
operation. The flowchart of our algorithm in the training
and testing phases is shown in Fig. 1.

3.1. The Training Phase

In dictionary learning based SISR, a couple of dictio-
naries together with certain mapping function are general-
ly used to model the relationship between LR and HR im-
ages. On one hand, the LR and HR dictionary learning can
be formulated into one objective function, and be jointly
learned using the training LR/HR patch pairs. However, for
the joint dictionary learning methods in [22, 29], because
the test HR image is not available, the mechanism of gen-
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erating coding vectors in training is different from that in
testing, leading to the inconsistency of the coding vectors in
the training and testing phases. Several strict joint learning
models [14, 28] have been developed to avoid coding incon-
sistency, but they need to solve a bi-level optimization prob-
lem. On the other hand, recent studies [33] also showed that
encouraging SISR performance can be obtained via separate
training of the LR and HR dictionaries. In [33], an LR dic-
tionary is first learned using the LR image dataset, and then
an HR dictionary is trained to reconstruct the HR patches
based on the sparse coding vectors of the corresponding LR
patches. In this work, we extend the method in [33] to CSC,
and learn the LR and HR filters for SISR.

3.1.1 LR filter learning for CSC decomposition

Suppose that we are given a group of HR images
{x1, xk, ..., xK} together with the corresponding LR images
{y1, yk, ..., yK} for training. Because the index k does not
affect the understanding of our algorithm, in the remainder
of this paper, we omit it for the purpose of simplicity.

In order to obtain sparser feature maps, we decompose
the LR image into one smooth component and one residual
component before SR. The smooth component is simply en-
larged by the bi-cubic interpolator, and the proposed CSC-
SR model is performed on the residual component. Actu-
ally, similar strategy of pre-decomposition has been used in
many previous SR works [8, 3, 29].

To extract the smooth component of the LR image y, we
first solve the following optimization problem:

minZ ‖y−fs⊗Zsy ‖2F +γ ‖ fdh⊗Zsy ‖2F +γ ‖ fdv⊗Zsy ‖2F , (2)

where Zsy is the low frequency feature map of LR image
y, fs is a 3 × 3 low pass filter with all coefficients being
1/9. fdh and fdv are the horizontal and vertical gradient
operators [1,−1] and [1;−1]. The closed form solution of
(2) can be efficiently solved in the Fourier domain:

Zsy = F−1(
F̂s ◦ F(y)

F̂s ◦ Fs + γF̂dh ◦ Fdh + γF̂dv ◦ Fdv
),

where F and F−1 are the FFT and inverse FFT operations,
Fs, Fdh and Fdv are the FFT transformations of fs, fdh

and fdv . Symbol “̂” means complex conjugate and “◦” de-
notes component-wise multiplication. The division is also
performed component-wisely. Having Zsy , we can decom-
pose the LR image as:

y = fs ⊗ Zsy + Y,

where fs ⊗ Zsy denotes the smooth component of the LR
image, and Y denotes the residual component which repre-
sents the high frequency edge and texture structures in the
LR image.

We then learn a group of LR filters to decompose the
residual component Y into N feature maps:

minZ,f‖Y−
∑N

i=1
f li⊗Zli ‖2F +λ

∑N

i=1
‖Zli ‖1,

s.t. ‖ f li ‖2F≤ 1,
(3)

where {f li}i=1∼N are N LR filters, and Zli is the sparse fea-
ture map of the ith filter.

Similar to other dictionary learning methods, we alterna-
tively optimize the Z and f subproblems. The Z subproblem
is a standard CSC problem that can be solved using the al-
gorithm proposed in [23]. For the f subproblem:

f l=argmin
f
‖Y−

∑N

i=1
f li⊗Zli ‖2F , s.t.‖ f li ‖2F≤ 1. (4)

We can solve it by the ADMM algorithm in the Fourier do-
main [23].

However, when ADMM is employed to solve the (4),
the feature maps of all the training images are required to
be loaded in the memory. If the number of training images
or the number of LR filters are large, the ADMM algorith-
m suffers from the problem of high memory demand for
solving (4). Fortunately, the marriage of the recently devel-
oped stochastic average (SA) algorithms and ADMM, i.e.,
SA-ADMM[34], can be utilized to optimize (4). Different
from standard ADMM, SA-ADMM adopts the linearization
technique which can be deployed to avoid the computation
of matrix inversion in our case, and utilizes the SA strate-
gy to avoid the storage of feature maps of all the training
images. More details of the optimization procedure can be
found in the supplementary materials.

3.1.2 Joint HR filter and mapping function learning

After the LR filters learning, we further learn the mapping
function and the HR filters based on the LR feature map-
s and the corresponding HR images. Like the LR images,
each HR image is decomposed into one smooth componen-
t and one residual component. First, bi-cubic interpolation
is adopted to enlarge Zsy , obtaining the low frequency HR
feature map Zsx. Then, the original HR image can be de-
composed as:

x = fs ⊗ Zsx + X,
where fs ⊗ Zsx denotes the smooth component, and X de-
notes the residual component which conveys the high fre-
quency edge and texture structures of HR image x. Given
the training set of LR feature maps and HR images, we are
able to learn the HR filters and the corresponding feature
mapping function.

In most of the previous dictionary learning based SR
methods, the LR image is first interpolated to the same size
as the HR image, and the sizes of the HR and LR dictionar-
ies are the same. In this work, we show that a small number
of LR filters with small filter size can also achieve satisfac-
tory SISR results while saving the decomposition time in
both the training and the testing phases. Thus, we directly
perform CSC on the small LR image that is much small-
er than the HR image. Furthermore, since the HR image
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is much more complex than the LR image, we propose to
decompose the LR image by a small number of LR filters
to reduce the computation burden, while reconstruct the HR
image by a larger number of HR filters with more flexible
representation capacity.

However, one challenge of the scheme above is that a
mapping function needs to be trained to zoom the LR fea-
ture maps to a higher resolution in terms of both spatial size
and feature map number. To this end, we propose to train a
mapping function between the LR and HR feature maps:

Zhj (kx, ky) = g(Zl1(x, y),Z
l
2(x, y), ...,Z

l
N (x, y);W), (5)

where k is the zooming factor, Zhj (kx, ky) is the coefficient
in position (kx, ky) of feature map Zhj , Zli(x, y) is the co-
efficient in the corresponding point (x, y) in feature map
Zli, and W is the parameter of mapping function g(•). For
Zhj (x′, y′) with mod(x′, k) 6= 0 or mod(y′, k) 6= 0, we
simply set Zhj (x′, y′) = 0.

The function g(•) should have the ability to generate s-
parse output from sparse input, and we use a sparse linear
transformation matrix to estimate the HR coefficient:

Zhj (kx, ky) = g(Zl:(x, y);wj) = wTj zl:(x, y),

s.t.wj � 0, |wj |1 = 1,
(6)

where zl:(x, y) is a vector containing all the coefficients in
point (x, y) of the N LR feature maps, and wj is the trans-
formation vector for the HR feature map Zhj . We let wj � 0
and |wj |1 = 1 to ensure the sparsity of W. The non-negative
simplex constraint used in (6) is stronger than some sparsity
regularizer (e.g., `1 norm). Another thing needs to be no-
ticed is that both the number and size of LR feature maps are
enlarged by the mapping function. Compared with the co-
efficients in the LR feature map, each coefficient in the HR
feature map includes the spatial information from a larger
local area. The spatial size of HR filters should also be set
larger to reconstruct the HR image.

After choosing the form of mapping function, our joint
HR filter and mapping function learning model is formulat-
ed as:
{fh,W}=minf ,W‖X−

∑M

j=1
fhj ⊗ g(Zl:;wj)‖2F ,

s.t. ‖ fhj ‖2F≤ e; wj � 0, |wj |1 = 1,
(7)

where e is a scalar to constraint the energy of HR filters. S-
ince the size of HR filter is different from the size of LR fil-
ter, the energy constraint should also be different. We opti-
mize the objective function by alternatively updating the fil-
ter fh and the mapping function parameter W. For fixed W,
the filter updating subproblem defined in (4) can be solved
by the SA-ADMM algorithm. For fixed f , the subproblem
on W is more complex, and we need to solve the following
optimization problem:
{W}=argmin

W
‖X−

∑M

j=1
fhj ⊗ g(Zl:;wj)‖2F ,

s.t. wj � 0, |wj |1 = 1.
(8)

Algorithm 1 The Training Algorithm for Convolutional S-
parse Coding based Super Resolution (CSC-SR)
Input: Training image pairs {x, y}, LR&HR filter numberN andM , LR&HR filter

sizes sl and sh, regularization parameter γ and λ;
1: Solve (2) to decompose LR image, get high frequency component Y of LR image;

2: Solve the CSC filter learning problem on Y, get Zl and f l;
3: Extract low frequency component of the bi-cubic interpolated LR image, get the

texture structure of HR image X;
4: Learn the HR filters and the mapping function;

Output: LR filters f l, HR filters fh and mapping function W

We also solve (8) by the SA-ADMM algorithm. Please refer
to the supplementary file for details of the optimization.

With the optimization algorithms for solving the f and
W subproblems, we summarize the training algorithm for
our CSC-SR method in Algorithm 1.

3.2. The Testing Phase

After training, we have the LR filters {f l}, HR filters
{fh} and the mapping function g(•;W). Given a testing L-
R image y, we extract its texture structure and decompose it
by the LR filters to get LR sparse feature maps {Zl}. Then,
the HR feature map can be estimated by {Zh} = g(Zl;W).
Finally, the high frequency texture structure in the HR out-
put image is obtained by the summation of the convolutions
of HR feature maps and the corresponding HR filters:

X̂ =
∑M

j=1
fhj ⊗ Zhj . (9)

We can then combine X̂ with the smooth component to gen-
erate the final HR estimation. To achieve better SR perfor-
mance, the back projection operation which is widely used
in other sparse coding based SR methods [12, 29, 35] can
also be utilized to improve the final HR estimation.

4. Experimental Results

In this section, we first provide a brief convergence anal-
ysis of the proposed training algorithm. Then, we present an
experiment to illustrate the advantages of the convolution-
al decomposition mechanism over the patch based method.
After a discussion of parameter setting, we compare our al-
gorithm with representative SR methods. The Matlab code
of the proposed CSC algorithm can be downloaded at http://
www4.comp.polyu.edu.hk/∼cslzhang/code/CSC SR.Zip.

The experimental setting in this paper is the same as [29].
LR training and testing images are generated by resizing
the HR groundtruth image by bi-cubic interpolation. Using
the same 91 training images provided by Yang et al. [29],
we randomly crop 1,000 72×72 smaller images from these
images to train our model. To avoid boundary effects of
Fourier domain implementation, 8 pixels are padded on the
image boundary.
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Figure 2. The convergence curve in the joint HR filter and mapping
function training.

4.1. Convergence Analysis

In our CSC-SR training algorithm, apart from training
filters to decompose the LR images, model (7) is also pro-
posed to jointly train the HR filters and mapping function.
The objective function in (7) is a bi-convex optimization
problem [10]. For fixed W, the problem is convex to f , and
for fixed f , the function is convex to W. We alternatively
optimize the f and the W sub-problems, which is actually
an alternate convex search (ACS) algorithm [10]. Since our
objective function has a general lower bound 0, if we can
get the optimal solutions of updating W and f , the joint HR
filter and mapping function training is guaranteed to con-
verge in terms of function energy.

It is empirically found that the optimization of joint HR
filter and mapping function training converges rapidly. Fig.
2 shows the convergence curve of our algorithm in an ex-
periment with 200 training images. Because the energy of
objective function is proportional to the number of pixels in
training images, in Fig. 2 the energy of objective function
is normalized by the pixel number of training images. The
symbol “4” represents the root mean square error (RMSE)
between the training images and their HR estimates after
updating filters f and the symbol “5” shows the RMSE af-
ter updating the mapping function g(•;W). In most of our
experiments, our algorithm will converge in 10 iterations.

4.2. CSC vs. Sparse Coding for SR
Table 1. SR results (PSNR, dB) by patch based sparse coding
method ScSR [29] and the proposed convolutional based sparse
coding method (without mapping function learning)

Zooming Factor 2

ScSR256 ScSR512 CSC256 CSC512
Butterfly 30.43 31.10 30.97 31.56

Bird 40.02 40.44 40.20 40.51
Comic 27.75 27.98 27.90 28.10
Woman 34.48 34.89 34.62 34.99
Foreman 36.18 36.49 36.46 36.56

To validate our argument that global decomposition by
convolution is more appropriate for SR, we compare the
convolutional based CSC and a representative patch based
sparse coding (SC) method. The ScSR [29] method is a
classical patch based SC method for SR. It trains a pair of
HR and LR dictionaries on the training set, and uses the s-
parse coding coefficients of the LR image to reconstruct the
HR image by the HR dictionary. To have a fair comparison
between CSC and SC methods, we omit the mapping func-
tion introduced in our method, and train a pair of LR filters
and HR filters to reconstruct the LR and HR images with the
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Figure 3. (a) The RMSE values with different HR/LR filter number
ratio on the training dataset and 3 testing images. (b) The RMSE
values with different LR filter number on the training dataset and
3 testing images.

same representation feature map. In the testing phase, we
decompose the interpolated LR image and use exactly the
same feature map to reconstruct the HR estimation. The SR
resluts (PSNR) by different methods (with dictionary size
256 and 512) on 5 images are shown in Table 1. The results
on other images are similar. We see that CSC-SR is always
better than ScSR with the same number of dictionary atoms.

4.3. Parameters Setting

A key parameter in all the dictionary based image recon-
struction methods is the number of dictionary atoms. With
a large dictionary atoms number, we are able to capture the
image sparsity property better, but suffer from heavier space
and time complexity. Here, we validate the effectiveness of
using different filter numbers and choose an appropriate ra-
tio between the LR filter number N and HR filter number
M . We train different models on 500 images. The number
of LR filters are fixed to 200 and the ratio between HR and
LR filters is set from 1 to 2 with step length 0.1. The RMSE
values on training images and 3 testing images are shown
in Fig.3 (a). Compared with ratio 1, using more HR filters
can provide better HR estimation. In all of our following
experiments, we set the ratio between HR filter number and
LR filter number as 3/2 to make a balance between SR per-
formance and algorithm complexity.

Besides the ratio between LR and HR filter numbers, an-
other important parameter in our algorithm is the number of
LR filter number. We test a wide range of LR filter numbers
with 500 training images, and the SR results with differ-
ent LR filter numbers are shown in Fig.3 (b). Generally,
the larger LR filter number leads to better SR results. To
achieve the best performance, we train 800 LR filters in the
following experiments.

Other parameters include the size of LR and HR filters,
regularization parameters γ and λ, and the HR filter energy
constraint parameter e. In all our following experiments, we
set the size of LR filter as 5 and set the size of HR filter as
5×Zooming Factor. The regularization parameters γ and λ
are set as 30 and 0.02, and the energy constraint parameter
e is set as 4 and 9 for zooming factor 2 and 3, respectively.
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Table 2. Super resolution results (PSNR, dB) by different methods.
Zooming Factor=2 Zooming Factor=3

LLE ScSR Zeyde ANR BPJDL DPSR CNN A+ CSC LLE ScSR Zeyde ANR BPJDL DPSR CNN A+ CSC
Butterfly 28.99 31.33 30.91 30.65 31.43 31.28 32.20 31.94 31.96 24.94 26.31 26.10 25.99 26.42 27.01 27.58 27.22 27.11

Face 35.57 35.69 35.69 35.70 35.75 35.64 35.60 35.72 35.71 33.40 33.52 33.62 33.65 33.45 33.61 33.57 33.74 33.80
Bird 38.93 40.53 40.25 40.23 40.98 39.77 40.63 40.98 41.49 33.84 34.42 34.75 34.70 34.53 34.82 34.92 34.48 35.78

Comic 27.34 28.02 27.89 27.92 28.24 27.98 28.28 28.29 28.43 23.79 24.09 24.10 24.12 24.13 24.24 24.40 24.39 24.42
Woman 33.71 34.95 34.74 34.70 35.23 34.64 34.93 35.27 35.31 29.63 30.38 30.53 30.42 30.50 30.75 30.92 31.19 31.27
Foreman 35.43 36.89 36.27 36.44 36.49 36.84 36.19 36.91 36.64 32.16 33.23 33.18 33.19 32.91 33.91 33.34 34.22 34.24
Coast. 30.30 30.60 30.61 30.56 30.63 30.55 30.49 30.60 30.65 27.03 27.01 27.22 27.13 27.07 27.20 27.19 27.27 27.27

Flowers 31.72 32.73 32.52 32.43 32.91 32.49 33.04 33.03 33.15 28.07 28.53 28.59 28.57 28.62 28.81 28.98 29.05 29.05
Zebra 32.54 33.46 33.58 33.36 33.62 33.22 33.30 33.67 33.77 28.00 28.60 28.80 28.65 28.73 28.97 28.90 29.06 29.30
Lena 35.95 36.46 36.39 36.42 36.58 36.27 36.48 36.57 36.66 32.60 33.04 33.15 33.15 33.13 33.25 33.39 33.50 33.62

Bridge 27.43 27.67 27.70 27.62 27.77 27.58 27.70 27.78 27.84 24.92 25.04 25.11 25.05 24.99 25.08 25.07 25.17 25.20
Baby 38.31 38.41 38.46 38.55 38.54 38.37 38.41 38.43 38.48 34.84 34.95 35.23 35.20 35.15 35.24 35.00 35.14 35.28

Peppers 35.82 36.72 36.60 36.38 36.71 36.55 36.75 37.06 36.90 33.15 33.88 34.13 33.88 34.02 34.29 34.35 34.71 34.72
Man 30.14 30.70 30.60 30.57 30.80 30.60 30.82 30.88 30.97 27.62 27.98 28.01 27.99 28.05 26.16 28.18 28.29 28.34

Barbara 28.59 28.70 28.75 28.62 28.68 28.60 28.59 28.70 28.77 26.77 26.71 26.86 26.74 26.82 26.82 26.65 26.47 26.67

AVE. 32.718 33.524 33.397 33.343 33.624 33.359 33.553 33.725 33.782 29.384 29.846 29.959 29.895 29.901 30.011 29.163 30.327 30.405

4.4. Comparison with State-of-the-Arts
In this section, we compare the proposed CSC-SR meth-

ods with several state-of-the-art SR methods, including Sc-
SR [29], LLE [3], the Zeyde′s method [33], anchored neigh-
borhood regression method (ANR) [20], the Beta process
joint dictionary learning method (BPJDL) [12], deformable
patch super resolution method (DPSR) [35], adjusted ANR
(A+) [21] and convolutional neural network based method
CNN-SR [6]. All methods follow the experimental setting
of [29], in which the LR images are resized from ground
truth HR images by bi-cubic interpolation. We download
the source codes from the author′s websites, and use the
recommended parameters by the authors.

We perform the SR comparison on 15 widely used test
images. The PSNR values by the competing methods are
shown in Table 2. CSC-SR achieves better results than
patch-based joint dictionary learning methods on most of
testing images. Compared with the state-of-the-art CNN-
SR and A+ method, the proposed CSC-SR methods also
achieves higher PSNR index on more testing images. Over-
all, CSC-SR improves the average PSNR value of CNN-SR
with more than 0.2 dB and improves the average PSNR val-
ue of A+ with about 0.1 dB.

Let′s then compare the visual quality of the SR result-
s. In Figs. 4, 5 and 6, we show the SR results of images
Foreman, Barbara and Face, by the competing algorithm-
s. As highlighted in the small window, the SR results by
competing algorithms either have clear ringing artifacts in
strong edge area or over-smooth too much the edge, while
the edges produced by the CSC-SR method are more nat-
ural. In summary, the results generated by the proposed
CSC-SR method have more textures and less artifacts, pro-
ducing visually more pleasant SR outputs. More examples
of SR results can be found in the supplementary file.

4.5. Time Complexity
Table 3. Running time of different SR algorithms

Methods ScSR Zeyde ANR BPJDL DPSR
Time(s) 259.14 6.17 1.95 528.62 52429.88

Methods CNN A+ CSC×2 CSC×3 CSC×4
Time(s) 7.65 2.02 570.93 276.75 170.85

The main computational burden of our CSC-SR model

in the testing phase is solving the CSC problem. As ana-
lyzed in [23], the time complexity of CSC in each iteration
is dominated by the FFTs, which isO(KNlogN) for an im-
age with N pixels decomposed by K filters. Suppose that
the LR image is of size 256×256, or 170×170, or 128×128,
and we are going to enlarge it to 512×512, i.e., the zooming
factor is 2, 3 and 4, respectively. Since CSC-SR directly de-
composes the LR image for SR, its running time varies a lot
for different zooming factors. In contrast, all the competing
SR algorithms firstly enlarge the LR image to 512×512 by
using the bicubic interpolator, and then post-process the en-
larged image. Therefore, their running time is basically the
same for the three zooming factors.

Table 3 lists the running time by different SR algorithm-
s. The experiments are conducted on a PC with i7 3.5GHz
CPU and 32Gb RAM. The Zeyde′s method [33], ANR [20],
A+ [21] and CNN-SR [6] cost less than 10 seconds. The
running time of the proposed CSC-SR is comparable to Sc-
SR [29] and BPJDL [12]. DPSR [35] is the slowest method.

5. Conclusion
In this paper, we proposed a convolutional sparse cod-

ing based super resolution (CSC-SR) method. CSC directly
decomposes the whole image by filtering, which naturally
takes the consistency of pixels in overlapped patches into
consideration. We introduced a mapping function between
the LR and HR sparse coding feature maps for SR. Differ-
ent from previous patch based sparse coding methods, the
convolutional decomposition mechanism of CSC can keep
the spatial information of input signal in the feature maps,
and exploit the consistency of neighboring patches for better
image reconstruction. Compared with other state-of-the-art
SR methods, our algorithm achieves not only very compet-
itive PSNR index, but also more pleasant visual quality of
image texture and edge structures.
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(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN-SR (i) A+ (j) CSC-SR

Figure 4. Super resolution results on image Foreman by different algorithms (zooming factor 3).

(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN-SR (i) A+ (j) CSC-SR

Figure 5. Super resolution results on image Barbara by different algorithms (zooming factor 3).

(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN-SR (i) A+ (j) CSC-SR

Figure 6. Super resolution results on image Face by different algorithms (zooming factor 4).
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