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Abstract: Image quality assessment (IQA) aims to use computational models to measure the image quality 

consistently with subjective evaluations. The well-known structural-similarity (SSIM) index brings IQA from 

pixel-based stage to structure-based stage. In this paper, a novel feature-similarity (FSIM) index for full 

reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly 

according to its low-level features. Specifically, the phase congruency (PC), which is a dimensionless 

measure of the significance of a local structure, is used as the primary feature in FSIM. Considering that PC 

is contrast invariant while the contrast information does affect HVS’ perception of image quality, the image 

gradient magnitude (GM) is employed as the secondary feature in FSIM. PC and GM play complementary 

roles in characterizing the image local quality. After obtaining the local quality map, we use PC again as a 

weighting function to derive a single quality score. Extensive experiments performed on six benchmark IQA 

databases demonstrate that FSIM can achieve much higher consistency with the subjective evaluations than 

state-of-the-art IQA metrics. 

 

Index Terms: Image quality assessment, phase congruency, gradient, low-level feature 

 

I. INTRODUCTION 

With the rapid proliferation of digital imaging and communication technologies, image quality assessment 

(IQA) has been becoming an important issue in numerous applications such as image acquisition, 

transmission, compression, restoration and enhancement, etc. Since the subjective IQA methods cannot be 
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readily and routinely used for many scenarios, e.g. real-time and automated systems, it is necessary to 

develop objective IQA metrics to automatically and robustly measure the image quality. Meanwhile, it is 

anticipated that the evaluation results should be statistically consistent with those of the human observers. To 

this end, the scientific community has developed various IQA methods in the past decades. According to the 

availability of a reference image, objective IQA metrics can be classified as full reference (FR), no-reference 

(NR) and reduced-reference (RR) methods [1]. In this paper, the discussion is confined to FR methods, 

where the original “distortion free” image is known as the reference image. 

The conventional metrics such as the peak signal-to-noise ratio (PSNR) and the mean squared error 

(MSE) operate directly on the intensity of the image and they do not correlate well with the subjective 

fidelity ratings. Thus many efforts have been made on designing human visual system (HVS) based IQA 

metrics. Such kinds of models emphasize the importance of HVS’ sensitivity to different visual signals, such 

as the luminance, the contrast, the frequency content, and the interaction between different signal 

components [2-4]. The noise quality measure (NQM) [2] and the visual signal-to-noise ratio (VSNR) [3] are 

two representatives. Methods such as the structural similarity (SSIM) index [1] are motivated by the need to 

capture the loss of structure in the image. SSIM is based on the hypothesis that HVS is highly adapted to 

extract the structural information from the visual scene; therefore, a measurement of structural similarity 

should provide a good approximation of perceived image quality. The multi-scale extension of SSIM, called 

MS-SSIM [5], produces better results than its single-scale counterpart. In [6], the authors presented a 

3-component weighted SSIM (3-SSIM) by assigning different weights to the SSIM scores according to the 

local region type: edge, texture or smooth area. In [7], Sheikh et al. introduced the information theory into 

image fidelity measurement, and proposed the information fidelity criterion (IFC) for IQA by quantifying the 

information shared between the distorted and the reference images. IFC was later extended to the visual 

information fidelity (VIF) metric in [4]. In [8], Sampat et al. made use of the steerable complex wavelet 

transform to measure the structural similarity of the two images and proposed the CW-SSIM index.  

Recent studies conducted in [9] and [10] have demonstrated that SSIM, MS-SSIM, and VIF could offer 

statistically much better performance in predicting images’ fidelity than the other IQA metrics. However, 

SSIM and MS-SSIM share a common deficiency that when pooling a single quality score from the local 

quality map (or the local distortion measurement map), all positions are considered to have the same 

importance. In VIF, images are decomposed in different sub-bands and these sub-bands can have different 
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weights at the pooling stage [11]; however, within each sub-band, every position is still given the same 

importance. Such pooling strategies are not consistent with the intuition that different locations on an image 

can have very different contributions to HVS’ perception of the image. This is corroborated by a recent study 

[12, 13], where the authors found that by incorporating appropriate spatially varying weights, the 

performance of some IQA metrics, e.g., SSIM, VIF, and PSNR, could be improved. But unfortunately, they 

did not present an automated method to generate such weights. 

The great success of SSIM and its extensions owes to the fact that HVS is adapted to the structural 

information in images. The visual information in an image, however, is often very redundant, while the HVS 

understands an image mainly based on its low-level features, such as edges and zero-crossings [14-16]. In 

other words, the salient low-level features convey crucial information for the HVS to interpret the scene. 

Accordingly, perceptible image degradations will lead to perceptible changes in image low-level features, 

and hence a good IQA metric could be devised by comparing the low-level feature sets between the 

reference image and the distorted image. Based on the above analysis, in this paper we propose a novel 

low-level feature similarity induced FR IQA metric, namely FSIM (Feature SIMilarity).  

One key issue is then what kinds of features could be used in designing FSIM? Based on the 

physiological and psychophysical evidence, it is found that visually discernable features coincide with those 

points where the Fourier waves at different frequencies have congruent phases [16-19]. That is, at points of 

high phase congruency (PC) we can extract highly informative features. Such a conclusion has been further 

corroborated by some recent studies in neurobiology using functional magnetic resonance imaging (fMRI) 

[20]. Therefore, PC is used as the primary feature in computing FSIM. Meanwhile, considering that PC is 

contrast invariant but image local contrast does affect HVS’ perception on the image quality, the image 

gradient magnitude (GM) is computed as the secondary feature to encode contrast information. PC and GM 

are complementary and they reflect different aspects of the HVS in assessing the local quality of the input 

image. After computing the local similarity map, PC is utilized again as a weighting function to derive a 

single similarity score. Although FSIM is designed for grayscale images (or the luminance components of 

color images), the chrominance information can be easily incorporated by means of a simple extension of 

FSIM, and we call this extension FSIMC.  

Actually, PC has already been used for IQA in the literature. In [21], Liu and Laganière proposed a 

PC-based IQA metric. In their method, PC maps are partitioned into sub-blocks of size 5×5. Then, the cross 
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correlation is used to measure the similarity between two corresponding PC sub-blocks. The overall 

similarity score is obtained by averaging the cross correlation values from all block pairs. In [22], PC was 

extended to phase coherence which can be used to characterize the image blur. Based on [22], Hassen et al. 

proposed an NR IQA metric to assess the sharpness of an input image [23]. 

The proposed FSIM and FSIMC are evaluated on six benchmark IQA databases in comparison with eight 

state-of-the-art IQA methods. The extensive experimental results show that FSIM and FSIMC can achieve 

very high consistency with human subjective evaluations, outperforming all the other competitors. 

Particularly, FSIM and FSIMC work consistently well across all the databases, while other methods may 

work well only on some specific databases. To facilitate repeatable experimental verifications and 

comparisons, the Matlab source code of the proposed FSIM/FSIMC indices and our evaluation results are 

available online at http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm. 

The remainder of this paper is organized as follows. Section II discusses the extraction of PC and GM. 

Section III presents in detail the computation of the FSIM and FSIMC indices. Section IV reports the 

experimental results. Finally, Section V concludes the paper. 

 

II. EXTRACTION OF PHASE CONGRUENCY AND GRADIENT MAGNITUDE  

A. Phase congruency (PC) 

Rather than define features directly at points with sharp changes in intensity, the PC model postulates that 

features are perceived at points where the Fourier components are maximal in phase. Based on the 

physiological and psychophysical evidences, the PC theory provides a simple but biologically plausible 

model of how mammalian visual systems detect and identify features in an image [16-20]. PC can be 

considered as a dimensionless measure for the significance of a local structure. 

Under the definition of PC in [17], there can be different implementations to compute the PC map of a 

given image. In this paper we adopt the method developed by Kovesi in [19], which is widely used in 

literature. We start from the 1D signal g(x). Denote by Me 
n  and Mo 

n  the even-symmetric and odd-symmetric 

filters on scale n and they form a quadrature pair. Responses of each quadrature pair to the signal will form a 

response vector at position x on scale n: [en(x), on(x)] = [g(x)* Me 
n , g(x)* Mo 

n ], and the local amplitude on 
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scale n is 2 2( ) ( ) ( )n n nA x e x o x= + . Let F(x) = ∑nen(x) and H(x) = ∑non(x). The 1D PC can be computed as 

( ) ( )( ) / ( )nn
PC x E x A xε= + ∑  (1) 

where ( )2 2( ) ( )E x F x H x= +  and ε is a small positive constant.  

With respect to the quadrature pair of filters, i.e. Me 
n  and Mo 

n , Gabor filters [24] and log-Gabor filters [25] 

are two widely used candidates. We adopt the log-Gabor filters because: 1) one cannot construct Gabor filters 

of arbitrarily bandwidth and still maintain a reasonably small DC component in the even-symmetric filter, 

while log-Gabor filters, by definition, have no DC component; and 2) the transfer function of the log-Gabor 

filter has an extended tail at the high frequency end, which makes it more capable to encode natural images 

than ordinary Gabor filters [19, 25]. The transfer function of a log-Gabor filter in the frequency domain is 

G(ω) = exp(-(log(ω/ω0))2/2σ2 
r ), where ω0 is the filter’s center frequency and σr controls the filter’s bandwidth. 

To compute the PC of 2D grayscale images, we can apply the 1D analysis over several orientations and 

then combine the results using some rule. The 1D log-Gabor filters described above can be extended to 2D 

ones by simply applying some spreading function across the filter perpendicular to its orientation. One 

widely used spreading function is Gaussian [19, 26-28]. According to [19], there are some good reasons to 

choose Gaussian. Particularly, the phase of any function would stay unaffected after being smoothed with 

Gaussian. Thus, the phase congruency would be preserved. By using Gaussian as the spreading function, the 

2D log-Gabor function has the following transfer function 

( )( ) ( )22
0

2 2 2

log /
( , ) exp exp

2 2
j

j
r

G
θ

θ θω ω
ω θ

σ σ

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟= − ⋅ −
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2) 

where θj = jπ / J, j = {0,1,…, J-1} is the orientation angle of the filter, J is the number of orientations and σθ 

determines the filter’s angular bandwidth. An example of the 2D log-Gabor filter in the frequency domain, 

with ω0 = 1/6, θj = 0, σr = 0.3, and σθ = 0.4, is shown in Fig. 1. 

By modulating ω0 and θj and convolving G2 with the 2D image, we get a set of responses at each point x 

as , ,( ), ( )
j jn ne oθ θ

⎡ ⎤
⎣ ⎦x x . The local amplitude on scale n and orientation θj is 2 2

, , ,( ) ( ) ( )
j j jn n nA e oθ θ θ= +x x x , 

and the local energy along orientation θj is ( )22( ) ( )
j j j

E F Hθ θ θ= +x x x , where ,( ) ( )
j jnn

F eθ θ= ∑x x  and 

,( ) ( )
j jnn

H oθ θ= ∑x x . The 2D PC at x is defined as 
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It should be noted that PC2D(x) is a real number within 0 ~ 1. Examples of the PC maps of 2D images can be 

found in Fig. 2. 

 

   
(a) (b) (c) 

Fig. 1: An example of the log-Gabor filter in the frequency domain, with ω0 = 1/6, θj = 0, σr = 0.3, and σθ  = 0.4. 
(a) The radial component of the filter. (b) The angular component of the filter. (c) The log-Gabor filter, which is 
the product of the radial component and the angular component. 
 

B. Gradient magnitude (GM) 

Image gradient computation is a traditional topic in image processing. Gradient operators can be expressed 

by convolution masks. Three commonly used gradient operators are the Sobel operator [29], the Prewitt 

operator [29] and the Scharr operator [30]. Their performances will be examined in the section of 

experimental results. The partial derivatives Gx(x) and Gy(x) of the image f(x) along horizontal and vertical 

directions using the three gradient operators are listed in Table I. The gradient magnitude (GM) of f(x) is then 

defined as 2 2
x yG G G= + .  

 
 

TABLE I. PARTIAL DERIVATIVES OF f(x) USING DIFFERENT GRADIENT OPERATORS 
 

 Sobel Prewitt Scharr 

Gx(x) 
1 1

1 2 0 * ( )
4

1 1
f

       0    −⎡ ⎤
⎢ ⎥          − 2⎢ ⎥
⎢ ⎥       0    −⎣ ⎦

x  

1 1
1 0 * ( )
3

1 1
f

       0    −⎡ ⎤
⎢ ⎥1           −1⎢ ⎥
⎢ ⎥       0    −⎣ ⎦

x  
1 0 * ( )

16
3

f
3       0    − 3⎡ ⎤

⎢ ⎥10         −10⎢ ⎥
⎢ ⎥3       0    −⎣ ⎦

x  

Gy(x) 
1 2 1

1 0 0 0 * ( )
4

1 2 1
f

               ⎡ ⎤
⎢ ⎥              ⎢ ⎥
⎢ ⎥−    −    −⎣ ⎦

x  
1 1

1 0 0 0 * ( )
3

1 1 1
f

        1       ⎡ ⎤
⎢ ⎥             ⎢ ⎥
⎢ ⎥−    −    −⎣ ⎦

x  1 0 0 0 * ( )
16

3 10 3
f

3        10      3⎡ ⎤
⎢ ⎥                ⎢ ⎥
⎢ ⎥−    −    −⎣ ⎦

x  
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III. THE FEATURE SIMILARITY (FSIM) INDEX 
With the extracted PC and GM feature maps, in this section we present a novel Feature SIMilarity (FSIM) 

index for IQA. Suppose that we are going to calculate the similarity between images f1 and f2. Denote by PC1 

and PC2 the PC maps extracted from f1 and f2, and G1 and G2 the GM maps extracted from them. It should be 

noted that for color images, PC and GM features are extracted from their luminance channels. FSIM will be 

defined and computed based on PC1, PC2, G1 and G2. Furthermore, by incorporating the image chrominance 

information into FSIM, an IQA index for color images, denoted by FSIMC, will be obtained. 

 

A. The FSIM index 

The computation of FSIM index consists of two stages. In the first stage, the local similarity map is 

computed, and then in the second stage, we pool the similarity map into a single similarity score.  

We separate the feature similarity measurement between f1(x) and f2(x) into two components, each for 

PC or GM. First, the similarity measure for PC1(x) and PC2(x) is defined as 

1 2 1
2 2

1 2 1

2 ( ) ( )( )
( ) ( )PC

PC PC TS
PC PC T

⋅ +
=

+ +
x xx

x x
 (4) 

where T1 is a positive constant to increase the stability of SPC (such a consideration was also included in 

SSIM [1]). In practice, the determination of T1 depends on the dynamic range of PC values. Eq. (4) is a 

commonly used measure to define the similarity of two positive real numbers [1] and its result ranges within 

(0, 1]. Similarly, the GM values G1(x) and G2(x) are compared and the similarity measure is defined as 

1 2 2
2 2

1 2 2

2 ( ) ( )( )
( ) ( )G

G G TS
G G T

⋅ +
=

+ +
x xx

x x
 (5) 

where T2 is a positive constant depending on the dynamic range of GM values. In our experiments, both T1 

and T2 will be fixed to all databases so that the proposed FSIM can be conveniently used. Then, SPC(x) and 

SG(x) are combined to get the similarity SL(x) of f1(x) and f2(x). We define SL(x) as  

( ) [ ( )] [ ( )]L PC GS S Sα β= ⋅x x x  (6) 

where α and β are parameters used to adjust the relative importance of PC and GM features. In this paper, we 

set α = β =1 for simplicity. Thus, SL(x) = SPC(x)·SG(x). 

Having obtained the similarity SL(x) at each location x, the overall similarity between f1 and f2 can be 
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calculated. However, different locations have different contributions to HVS’ perception of the image. For 

example, edge locations convey more crucial visual information than the locations within a smooth area. 

Since human visual cortex is sensitive to phase congruent structures [20], the PC value at a location can 

reflect how likely it is a perceptibly significant structure point. Intuitively, for a given location x, if anyone of 

f1(x) and f2(x) has a significant PC value, it implies that this position x will have a high impact on HVS in 

evaluating the similarity between f1 and f2. Therefore, we use PCm(x) = max(PC1(x), PC2(x)) to weight the 

importance of SL(x) in the overall similarity between f1 and f2, and accordingly the FSIM index between f1 

and f2 is defined as 

( ) ( )
FSIM

( )
L m

m

S PC
PC

∈Ω

∈Ω

⋅
= ∑

∑
x

x

x x
x

 (7) 

where Ω means the whole image spatial domain. 

 

B. Extension to color image quality assessment 

The FSIM index is designed for grayscale images or the luminance components of color images. Since the 

chrominance information will also affect HVS in understanding the images, better performance can be 

expected if the chrominance information is incorporated in FSIM for color IQA. Such a goal can be achieved 

by applying a straightforward extension to the FSIM framework. 

At first, the original RGB color images are converted into another color space, where the luminance can 

be separated from the chrominance. To this end, we adopt the widely used YIQ color space [31], in which Y 

represents the luminance information and I and Q convey the chrominance information. The transform from 

the RGB space to the YIQ space can be accomplished via [31]:  

0.299 0.587 0.114
0.596 0.274 0.322
0.211 0.523 0.312

Y R
I G
Q B

              ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=      −    −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥     −        ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (8) 

Let I1 (I2) and Q1 (Q2) be the I and Q chromatic channels of the image f1 (f2), respectively. Similar to the 

definitions of SPC(x) and SG(x), we define the similarity between chromatic features as 

1 2 3
2 2

1 2 3

2 ( ) ( )( )
( ) ( )I

I I TS
I I T

⋅ +
=

+ +
x xx

x x
, 1 2 4

2 2
1 2 4

2 ( ) ( )( )
( ) ( )Q

Q Q TS
Q Q T

⋅ +
=

+ +
x xx

x x
 (9) 
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f1 f2

PC1 PC2 G1 G2

SPC SG

( ) ( ) ( ) ( ) ( )
FSIM

( )
PC G I Q m

C
m

S S S S PC
PC

λ

Ω

Ω

⎡ ⎤⋅ ⋅ ⋅ ⋅⎣ ⎦=
∑

∑
x x x x x

x

I1 Q1I2 Q2
Y1

YIQ decomposition

PCm

Y2

SI SQ

 
Fig. 2: Illustration for the FSIM/FSIMC index computation. f1 is the reference image and f2 is a distorted version of f1. 

 
where T3 and T4 are positive constants. Since I and Q components have nearly the same dynamic range, in 

this paper we set T3 = T4 for simplicity. SI(x) and SQ(x) can then be combined to get the chrominance 

similarity measure, denoted by SC(x), of f1(x) and f2(x): 

( ) ( ) ( )C I QS S S= ⋅x x x  (10) 

Finally, the FSIM index can be extended to FSIMC by incorporating the chromatic information in a 

straightforward manner: 

[ ]( ) ( ) ( )
FSIM

( )
L C m

C
m

S S PC
PC

λ
∈Ω

∈Ω

⋅ ⋅
= ∑

∑
x

x

x x x
x

 (11) 

where λ > 0 is the parameter used to adjust the importance of the chromatic components. The procedures to 

calculate the FSIM/FSIMC indices are illustrated in Fig. 2. If the chromatic information is ignored in Fig. 2, 

the FSIMC index is reduced to the FSIM index. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Databases and methods for comparison 

To the best of our knowledge, there are six publicly available image databases in the IQA community, 
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including TID2008 [10], CSIQ [32], LIVE [33], IVC [34], MICT [35] and A57 [36]. All of them will be used 

here for algorithm validation and comparison. The characteristics of these six databases are summarized in 

Table II. 

 

TABLE II. BENCHMARK TEST DATABASES FOR IQA 
 

Database Source Images Distorted Images Distortion Types Image Type Observers 
TID2008 25 1700 17 color 838 

CSIQ 30 866 6 color 35 
LIVE 29 779 5 color 161 
IVC 10 185 4 color 15 

MICT 14 168 2 color 16 
A57 3 54 6 gray unknown

 

The performance of the proposed FSIM and FSIMC indices will be evaluated and compared with eight 

representative IQA metrics, including seven state-of-the-arts (SSIM [1], MS-SSIM [5], VIF [4], VSNR [3], 

IFC [7], NQM [2], and Liu et al’s method [21]) and the classical PSNR. For Liu et al’s method [21], we 

implemented it by ourselves. For SSIM [1], we used the implementation provided by the author, which is 

available at [37]. For all the other methods evaluated, we used the public software MeTriX MuX [38]. The 

Matlab source code of the proposed FSIM/FSIMC indices is available online at 

http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm. 

Four commonly used performance metrics are employed to evaluate the competing IQA metrics. The 

first two are the Spearman rank-order correlation coefficient (SROCC) and the Kendall rank-order 

correlation coefficient (KROCC), which can measure the prediction monotonicity of an IQA metric. These 

two metrics operate only on the rank of the data points and ignore the relative distance between data points. 

To compute the other two metrics we need to apply a regression analysis, as suggested by the video quality 

experts group (VQEG) [39], to provide a nonlinear mapping between the objective scores and the subjective 

mean opinion scores (MOS). The third metric is the Pearson linear correlation coefficient (PLCC) between 

MOS and the objective scores after nonlinear regression. The fourth metric is the root mean squared error 

(RMSE) between MOS and the objective scores after nonlinear regression. For the nonlinear regression, we 

used the following mapping function [9]: 

2 31 4 5( )

1 1( )
2 1 xf x x

eβ ββ β β−
⎛ ⎞= − + +⎜ ⎟+⎝ ⎠

 (12) 
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where βi, i =1, 2, …, 5, are the parameters to be fitted. A better objective IQA measure is expected to have 

higher SROCC, KROCC and PLCC while lower RMSE values. 

 

B. Determination of parameters 

There are several parameters need to be determined for FSIM and FSIMC. To this end, we tuned the 

parameters based on a sub-dataset of TID2008 database, which contains the first 8 reference images in 

TID2008 and the associated 544 distorted images. The 8 reference images used in the tuning process are 

shown in Fig. 3. The tuning criterion was that the parameter value leading to a higher SROCC would be 

chosen. As a result, the parameters required in the proposed methods were set as: n = 4, J = 4, σr = 0.5978, σθ 

= 0.6545, T1 = 0.85, T2 = 160, T3 = T4 = 200, and λ = 0.03. Besides, the center frequencies of the log-Gabor 

filters at four scales were set as: 1/6, 1/12, 1/24 and 1/48. These parameters were then fixed for all the 

following experiments conducted. In fact, we have also used the last 8 reference images (and the associated 

544 distorted ones) to tune parameters and obtained very similar parameters to the ones reported here. This 

may imply that any 8 reference images in the TID2008 database work equally well in tuning parameters for 

FSIM/FSIMC. However, this conclusion is hard to prove theoretically or even experimentally because there 

are C8 
25=1081575 different ways to select 8 out of the 25 reference images in TID2008.  

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 3: Eight reference images used for the parameter tuning process. They are extracted from the TID2008 database. 

 

It should be noted that the FSIM/FSIMC indices will be most effective if used on the appropriate scale. 
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The precisely “right” scale depends on both the image resolution and the viewing distance and hence is 

difficult to be obtained. In practice, we used the following empirical steps proposed by Wang [37] to 

determine the scale for images viewed from a typical distance: 1) let F = max(1, round(N / 256)), where N is 

the number of pixels in image height or width; 2) average local F × F pixels and then down-sample the 

image by a factor of F. 

C. Gradient operator selection 

TABLE III. SROCC VALUES USING THREE GRADIENT OPERATORS 
 

Database SROCC 
Sobel 0.8797

Prewitt 0.8776
Scharr 0.8825

 
In our proposed IQA metrics FSIM/FSIMC, the gradient magnitude (GM) needs to be calculated. To this end, 

three commonly used gradient operators listed in Table I were examined, and the one providing the best 

result was selected. Such a gradient operator selection process was carried out by assuming that all the 

parameters discussed in Section IV-B were fixed. The selection criterion was also that the gradient operator 

leading to a higher SROCC would be selected. The sub-dataset used in Section IV-B was used here. The 

SROCC values obtained by the three gradient operators on the tuning dataset are listed in Table III, from 

which we can see that the Scharr operator could achieve slightly better performance than the other two. Thus, 

in all of the following experiments, the Scharr operator was used to calculate the gradient in FSIM/FSIMC. 

D. Example to demonstrate the effectiveness of FSIM/FSIMC 

In this subsection, we use an example to demonstrate the effectiveness of FSIM/FSIMC in evaluating the 

perceptible image quality. Fig. 4a is the I17 reference image in the TID2008 database, and Figs. 4b ~ 4f show 

five distorted images of I17: I17_01_2, I17_03_2, I17_09_1, I17_11_2, and I17_12_2. Distortion types of 

Figs. 4b ~ 4f are “additive Gaussian noise”, “spatially correlated noise”, “image denoising”, “JPEG 2000 

compression”, and “JPEG transformation errors”, respectively. According to the naming convention of 

TID2008, the last number (the last digit) of the image’s name represents the distortion degree, and a greater 

number indicates a severer distortion. We compute the image quality of Figs. 4b ~ 4f using various IQA 

metrics and the results are summarized in Table IV. We also list the subjective scores (extracted from 
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TID2008) of these 5 images in Table IV. For each IQA metric and the subjective evaluation, higher scores 

mean higher image quality. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4: (a) A reference image; (b) ~ (f) are the distorted versions of (a) in the TID2008 database. Distortion types of 
(b) ~ (f) are “additive Gaussian noise”, “spatially correlated noise”, “image denoising”, “JPEG 2000 compression”, 
and “JPEG transformation errors”, respectively. 

 

   
(a) (b) (c) 

  

(d) (e) (f) 

Fig. 5: (a) ~ (f) are PC maps extracted from images Figs. 4a ~ 4f, respectively. (a) is the PC map of the reference 
image while (b) ~ (f) are the PC maps of the distorted images. (b) and (d) are more similar to (a) than (c), (e), and (f). 
In (c), (e), and (f), regions with obvious differences to the corresponding regions in (a) are marked by colorful 
rectangles. 
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In order to show the correlation of each IQA metric with the subjective evaluation more clearly, in Table 

V, we rank the images according to their quality scores computed by each metric as well as the subjective 

evaluation. From Tables IV and V, we can see that the quality scores computed by FSIM/FSIMC correlate 

with the subjective evaluation much better than the other IQA metrics. From Table V we can also see that 

other than the proposed FSIM/FSIMC metrics, all the other IQA metrics cannot give the same ranking as the 

subjective evaluations.  

 
TABLE IV. QUALITY EVALUATION OF IAMGES IN FIG. 4 

 
 Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 4f 

Subjective score 5.2222 4.0571 6.1389 3.3429 5.2000 
FSIM 0.9776 0.9281 0.9827 0.9085 0.9583 
FSIMC 0.9741 0.9195 0.9817 0.9071 0.9582 

MS-SSIM 0.9590 0.9109 0.9832 0.9170 0.9633 
VIF 0.5803 0.4037 0.5670 0.1876 0.6484 

SSIM  0.9268 0.8419 0.9686 0.8464 0.9306 
IFC 3.5416 2.3441 3.9036 1.1710 8.0318 

VSNR 30.7669 22.6702 32.2891 21.1772 18.6739 
NQM 29.5608 21.0153 29.4932 19.4725 16.3083 
[21] 0.8790 0.7158 0.9110 0.6503 0.9172 

PSNR 27.1845 27.1577 34.0126 27.0330 26.9246 
 

TABLE V. RANKING OF IMAGES ACCORDING TO THEIR QUALITY COMPUTED BY EACH IQA METRIC 
 

 Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 4f 
Subjective score 2 4 1 5 3 

FSIM 2 4 1 5 3 
FSIMC 2 4 1 5 3 

MS-SSIM 3 5 1 4 2 
VIF 2 4 3 5 1 

SSIM 3 5 1 4 2 
IFC 3 4 2 5 1 

VSNR 2 3 1 4 5 
NQM 1 3 2 4 5 
[21] 3 4 2 5 1 

PSNR 2 3 1 4 5 
 

The success of FSIM/FSIMC actually owes to the proper use of PC maps. Figs. 5a ~ 5f show the PC 

maps of the images in Figs. 4a ~ 4f, respectively. We can see that images in Figs. 4b and 4d have better 

perceptible qualities than those in Figs. 4c, 4e, and 4f; meanwhile, by visually examination we can see that 

maps in Figs. 5b and 5d (PC maps of images in Figs. 4b and 4d) are more similar to the map in Fig. 5a (PC 
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map of the reference image in Fig. 4a) than the maps in Figs. 5c, 5e, and 5f (PC maps of images in Figs. 4c, 

4e, and 4f). In order to facilitate visual examination, in Figs. 5c, 5e, and 5f, regions with obvious differences 

to the corresponding regions in Fig. 5a are marked by rectangles. For example, in Fig. 5c, the neck region 

marked by the yellow rectangle has a perceptible difference to the same region in Fig. 5a. This example 

clearly illustrates that images of higher quality will have more similar PC maps to that of the reference image 

than images of lower quality. Therefore, by properly making use of PC maps in FSIM/FSIMC, we can predict 

the image quality consistently with human subjective evaluations. More statistically convincing results will 

be presented in the next two sub-sections. 

E. Overall performance comparison 

TABLE VI: PERFORMANCE COMPARISON OF IQA METRICS ON 6 BENCHMARK DATABASES 

  FSIM FSIMC MS-SSIM VIF SSIM IFC VSNR NQM [21] PSNR 

TID 
2008 

SROCC 0.8805 0.8840 0.8528 0.7496 0.7749 0.5692 0.7046 0.6243 0.7388 0.5245
KROCC 0.6946 0.6991 0.6543 0.5863 0.5768 0.4261 0.5340 0.4608 0.5414 0.3696
PLCC 0.8738 0.8762 0.8425 0.8090 0.7732 0.7359 0.6820 0.6135 0.7679 0.5309
RMSE 0.6525 0.6468 0.7299 0.7888 0.8511 0.9086 0.9815 1.0598 0.8595 1.1372

CSIQ 
SROCC 0.9242 0.9310 0.9138 0.9193 0.8756 0.7482 0.8106 0.7402 0.7642 0.8057
KROCC 0.7567 0.7690 0.7397 0.7534 0.6907 0.5740 0.6247 0.5638 0.5811 0.6080
PLCC 0.9120 0.9192 0.8998 0.9277 0.8613 0.8381 0.8002 0.7433 0.8222 0.8001
RMSE 0.1077 0.1034 0.1145 0.0980 0.1334 0.1432 0.1575 0.1756 0.1494 0.1575

LIVE 
SROCC 0.9634 0.9645 0.9445 0.9631 0.9479 0.9234 0.9274 0.9086 0.8650 0.8755
KROCC 0.8337 0.8363 0.7922 0.8270 0.7963 0.7540 0.7616 0.7413 0.6781 0.6864
PLCC 0.9597 0.9613 0.9430 0.9598 0.9449 0.9248 0.9231 0.9122 0.8765 0.8721
RMSE 7.6780 7.5296 9.0956 7.6734 8.9455 10.392 10.506 11.193 13.155 13.368

IVC 
SROCC 0.9262 0.9293 0.8847 0.8966 0.9018 0.8978 0.7983 0.8347 0.8383 0.6885
KROCC 0.7564 0.7636 0.7012 0.7165 0.7223 0.7192 0.6036 0.6342 0.6441 0.5220
PLCC 0.9376 0.9392 0.8934 0.9028 0.9119 0.9080 0.8032 0.8498 0.8454 0.7199
RMSE 0.4236 0.4183 0.5474 0.5239 0.4999 0.5105 0.7258 0.6421 0.6507 0.8456

MICT 
SROCC 0.9059 0.9067 0.8864 0.9086 0.8794 0.8387 0.8614 0.8911 0.6923 0.6130
KROCC 0.7302 0.7303 0.7029 0.7329 0.6939 0.6413 0.6762 0.7129 0.5152 0.4447
PLCC 0.9078 0.9075 0.8935 0.9144 0.8887 0.8434 0.8710 0.8955 0.7208 0.6426
RMSE 0.5248 0.5257 0.5621 0.5066 0.5738 0.6723 0.6147 0.5569 0.8674 0.9588

 SROCC 0.9181 - 0.8394 0.6223 0.8066 0.3185 0.9355 0.7981 0.7155 0.6189
A57 KROCC 0.7639 - 0.6478 0.4589 0.6058 0.2378 0.8031 0.5932 0.5275 0.4309

PLCC 0.9252 - 0.8504 0.6158 0.8017 0.4548 0.9472 0.8020 0.7399 0.6587
 RMSE 0.0933 - 0.1293 0.1936 0.1469 0.2189 0.0781 0.1468 0.1653 0.1849

 
 
 
In this section, we compare the general performance of the competing IQA metrics. Table VI lists the 

SROCC, KROCC, PLCC, and RMSE results of FSIM/FSIMC and the other 8 IQA algorithms on the 

TID2008, CSIQ, LIVE, IVC, MICT, and A57 databases. For each performance measure, the three IQA 

indices producing the best results are highlighted in boldface for each database. It should be noted that 

except for FSIMC, all the other IQA indices are based on the luminance component of the image. From Table 
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VI, we can see that the proposed feature-similarity based IQA metric FSIM or FSIMC performs consistently 

well across all the databases. In order to demonstrate this consistency more clearly, in Table VII we list the 

performance ranking of all the IQA metrics according to their SROCC values. For fairness, the FSIMC index, 

which also exploits the chrominance information of images, is excluded in Table VII. 

 
TABLE VII: RANKING OF IQA METRICS’ PERFORMANCE (EXCEPT FOR FSIMC) ON SIX DATABASES 

 
 TID2008 CSIQ LIVE IVC MICT A57 

FSIM 1 1 1 1 2 2 
MS-SSIM 2 3 4 5 4 3 

VIF 4 2 2 4 1 7 
SSIM 3 4 3 2 5 4 
IFC 8 8 6 3 7 9 

VSNR 6 5 5 8 6 1 
NQM 7 9 7 7 3 5 
[21] 5 7 9 6 8 6 

PSNR 9 6 8 9 9 8 
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Fig. 6: Scatter plots of subjective MOS versus scores obtained by model prediction on the TID 2008 database. (a) 
MS-SSIM; (b) SSIM; (c) VIF; (d) VSNR; (e) IFC; (f) NQM; (g) PSNR; (h) method in [21] and (i) FSIM. 
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From the experimental results summarized in Table VI and Table VII, we can see that our methods 

achieve the best results on almost all the databases, except for MICT and A57. Even on these two databases, 

however, the proposed FSIM (or FSIMC) is only slightly worse than the best results. Moreover, considering 

the scales of the databases, including the number of images, the number of distortion types, and the number 

of observers, we think that the results obtained on TID2008, CSIQ, LIVE and IVC are much more 

convincing than those obtained on MICT and A57. Overall speaking, FSIM and FSIMC achieve the most 

consistent and stable performance across all the 6 databases. By contrast, for the other methods, they may 

work well on some databases but fail to provide good results on other databases. For example, although VIF 

can get very pleasing results on LIVE, it performs poorly on TID2008 and A57. The experimental results 

also demonstrate that the chromatic information of an image does affect its perceptible quality since FSIMC 

has better performance than FSIM on all color image databases. Fig. 6 shows the scatter distributions of 

subjective MOS versus the predicted scores by FSIM and the other 8 IQA indices on the TID 2008 database. 

The curves shown in Fig. 6 were obtained by a nonlinear fitting according to Eq. (12). From Fig. 6, one can 

see that the objective scores predicted by FSIM correlate much more consistently with the subjective 

evaluations than the other methods. 

  

F. Performance on individual distortion types 

In this experiment, we examined the performance of the competing methods on different image distortion 

types. We used the SROCC score, which is a widely accepted and used evaluation measure for IQA metrics 

[1, 39], as the evaluation measure. By using the other measures, such as KROCC, PLCC, and RMSE, similar 

conclusions could be drawn. The three largest databases, TID2008, CSIQ and LIVE, were used in this 

experiment. The experimental results are summarized in Table VIII. For each database and each distortion 

type, the first 3 IQA indices producing the highest SROCC values are highlighted in boldface. We can have 

some observations based on the results listed in Table VIII. In general, when the distortion type is known 

beforehand, FSIMC performs the best, while FSIM and VIF have comparable performance. FSIM, FSIMC 

and VIF perform much better than the other IQA indices. Compared with VIF, FSIM and FSIMC are more 

capable in dealing with the distortions of “denoising”, “quantization noise”, and “mean shift”. By contrast, 

for the distortions of “masked noise” and “impulse noise”, VIF performs better than FSIM and FSIMC. 
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Moreover, results in Table VIII once again corroborates that the chromatic information does affect the 

perceptible quality since FSIMC has better performance than FSIM on each database for nearly all the 

distortion types. 

 

TABLE VIII: SROCC VALUES OF IQA METRICS FOR EACH DISTORTION TYPE 

  FSIM FSIMC MS-SSIM VIF SSIM IFC VSNR NQM [21] PSNR

TID 
2008 

awgn 0.8566 0.8758 0.8094 0.8799 0.8107 0.5817 0.7728 0.7679 0.5069 0.9114
awgn-color 0.8527 0.8931 0.8064 0.8785 0.8029 0.5528 0.7793 0.7490 0.4625 0.9068

spatial corr-noise 0.8483 0.8711 0.8195 0.8703 0.8144 0.5984 0.7665 0.7720 0.6065 0.9229
masked noise 0.8021 0.8264 0.8155 0.8698 0.7795 0.7326 0.7295 0.7067 0.5301 0.8487
high-fre-noise 0.9093 0.9156 0.8685 0.9075 0.8729 0.7361 0.8811 0.9015 0.6935 0.9323
impulse noise 0.7452 0.7719 0.6868 0.8331 0.6732 0.5334 0.6471 0.7616 0.4537 0.9177

quantization noise 0.8564 0.8726 0.8537 0.7956 0.8531 0.5911 0.8270 0.8209 0.6214 0.8699
blur 0.9472 0.9472 0.9607 0.9546 0.9544 0.8766 0.9330 0.8846 0.8883 0.8682

denoising 0.9603 0.9618 0.9571 0.9189 0.9530 0.8002 0.9286 0.9450 0.7878 0.9381
jpg-comp 0.9279 0.9294 0.9348 0.9170 0.9252 0.8181 0.9174 0.9075 0.8186 0.9011

jpg2k-comp 0.9773 0.9780 0.9736 0.9713 0.9625 0.9445 0.9515 0.9532 0.9301 0.8300
jpg-trans-error 0.8708 0.8756 0.8736 0.8582 0.8678 0.7966 0.8056 0.7373 0.8334 0.7665

jpg2k-trans-error 0.8544 0.8555 0.8525 0.8510 0.8577 0.7303 0.7909 0.7262 0.7164 0.7765
pattern-noise 0.7491 0.7514 0.7336 0.7608 0.7107 0.8410 0.5716 0.6800 0.7677 0.5931

block-distortion 0.8492 0.8464 0.7617 0.8320 0.8462 0.6767 0.1926 0.2348 0.7282 0.5852
mean shift 0.6720 0.6554 0.7374 0.5132 0.7231 0.4375 0.3715 0.5245 0.3487 0.6974

contrast 0.6481 0.6510 0.6400 0.8190 0.5246 0.2748 0.4239 0.6191 0.3883 0.6126

CSIQ 

awgn 0.9262 0.9359 0.9471 0.9571 0.8974 0.8460 0.9241 0.9384 0.7501 0.9363

jpg-comp 0.9654 0.9664 0.9622 0.9705 0.9546 0.9395 0.9036 0.9527 0.9088 0.8882

jpg2k-comp 0.9685 0.9704 0.9691 0.9672 0.9606 0.9262 0.9480 0.9631 0.8886 0.9363

1/f noise 0.9234 0.9370 0.9330 0.9509 0.8922 0.8279 0.9084 0.9119 0.7905 0.9338

blur 0.9729 0.9729 0.9720 0.9747 0.9609 0.9593 0.9446 0.9584 0.9551 0.9289

contrast 0.9420 0.9438 0.9521 0.9361 0.7922 0.5416 0.8700 0.9479 0.4326 0.8622
 jpg2k-comp 0.9717 0.9724 0.9654 0.9683 0.9614 0.9100 0.9551 0.9435 0.8533 0.8954

LIVE 
jpg-comp 0.9834 0.9840 0.9793 0.9842 0.9764 0.9440 0.9657 0.9647 0.9127 0.8809

awgn 0.9652 0.9716 0.9731 0.9845 0.9694 0.9377 0.9785 0.9863 0.9079 0.9854
blur 0.9708 0.9708 0.9584 0.9722 0.9517 0.9649 0.9413 0.8397 0.9365 0.7823

 jpg2k-trans-error 0.9499 0.9519 0.9321 0.9652 0.9556 0.9644 0.9027 0.8147 0.8765 0.8907

 

V. CONCLUSIONS 

In this paper, we proposed a novel low-level feature based image quality assessment (IQA) metric, namely 

Feature-SIMilarity (FSIM) index. The underlying principle of FSIM is that HVS perceives an image mainly 
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based on its salient low-level features. Specifically, two kinds of features, the phase congruency (PC) and the 

gradient magnitude (GM), are used in FSIM, and they represent complementary aspects of the image visual 

quality. The PC value is also used to weight the contribution of each point to the overall similarity of two 

images. We then extended FSIM to FSIMC by incorporating the image chromatic features into consideration. 

The FSIM and FSIMC indices were compared with eight representative and prominent IQA metrics on six 

benchmark databases, and very promising results were obtained by FSIM and FSIMC. When the distortion 

type is known beforehand, FSIMC performs the best while FSIM achieves comparable performance with VIF. 

When all the distortion types are involved (i.e. all the images in a test database are used), FSIM and FSIMC 

outperform all the other IQA metrics used in comparison. Particularly, they perform consistently well across 

all the test databases, validating that they are very robust IQA metrics.  

REFERENCES 

[1] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: from error visibility to 

structural similarity”, IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004. 

[2] N. Damera-Venkata, T.D. Kite, W.S. Geisler, B.L. Evans, and A.C. Bovik, “Image quality assessment based on a 

degradation model”, IEEE Trans. Image Process., vol. 9, no. 4, pp. 636-650, Apr. 2000. 

[3] D.M. Chandler and S.S. Hemami, “VSNR: a wavelet-based visual signal-to-noise ratio for natural images”, IEEE 

Trans. Image Process., vol. 16, no. 9, pp. 2284-2298, Sep. 2007. 

[4] H.R. Sheikh and A.C. Bovik, “Image information and visual quality”, IEEE Trans. Image Process., vol. 15, no. 2, 

pp. 430-444, Feb. 2006. 

[5] Z. Wang, E.P. Simoncelli, and A.C. Bovik, “Multi-scale structural similarity for image quality assessment”, 

presented at the IEEE Asilomar Conf. Signals, Systems and Computers, Nov. 2003. 

[6] C. Li and A.C. Bovik, “Three-component weighted structural similarity index”, in Proc. SPIE, vol. 7242, 2009. 

[7] H.R. Sheikh, A.C. Bovik, and G. de Veciana, “An information fidelity criterion for image quality assessment using 

natural scene statistics”, IEEE Trans. Image Process., vol. 14, no. 12, pp. 2117-2128, Dec. 2005. 

[8] M.P. Sampat, Z. Wang, S. Gupta, A.C. Bovik, and M.K. Markey, “Complex wavelet structural similarity: a new 

image similarity index”, IEEE Trans. Image Process., vol. 18, no. 11, pp. 2385-2401, Nov. 2009. 

[9] H.R. Sheikh, M.F. Sabir, and A.C. Bovik, “A statistical evaluation of recent full reference image quality 

assessment algorithms”, IEEE Trans. Image Process., vol. 15, no. 11, pp. 3440-3451, Nov. 2006. 



 20

[10] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008 - A database for 

evaluation of full-reference visual quality assessment metrics”, Advances of Modern Radioelectronics, vol. 10, pp. 

30-45, 2009. 

[11] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment”, IEEE Trans. Image 

Process., accepted. 

[12] E.C. Larson and D.M. Chandler, “Unveiling relationships between regions of interest and image fidelity metrics”, 

in Proc. SPIE Visual Comm. and Image Process., vol. 6822, pp. 6822A1-16, Jan. 2008. 

[13] E.C. Larson, C. Vu, and D.M. Chandler, “Can visual fixation patterns improve image fidelity assessment?”, in 

Proc. IEEE Int. Conf. Image Process., 2008, pp. 2572-2575. 

[14] D. Marr, Vision. New York: W. H. Freeman and Company, 1980. 

[15] D. Marr and E. Hildreth, “Theory of edge detection”, Proc. R. Soc. Lond. B, vol. 207, no. 1167, pp. 187-217, Feb. 

1980. 

[16] M.C. Morrone and D.C. Burr, “Feature detection in human vision: a phase-dependent energy model”, Proc. R. Soc. 

Lond. B, vol. 235, no. 1280, pp. 221-245, Dec. 1988. 

[17] M.C. Morrone, J. Ross, D.C. Burr, and R. Owens, “Mach bands are phase dependent”, Nature, vol. 324, no. 6049, 

pp. 250-253, Nov. 1986.  

[18] M.C. Morrone and R.A. Owens, “Feature detection from local energy”, Pattern Recognit. Letters, vol. 6, no. 5, pp. 

303-313, Dec. 1987. 

[19] P. Kovesi, “Image features from phase congruency”, Videre: J. Comp. Vis. Res., vol. 1, no. 3, pp. 1-26, 1999. 

[20] L. Henriksson, A. Hyvärinen, and S. Vanni, “Representation of cross-frequency spatial phase relationships in 

human visual cortex”, J. Neuroscience, vol. 29, no. 45, pp. 14342-14351, Nov. 2009. 

[21] Z. Liu and R. Laganière, “Phase congruence measurement for image similarity assessment”, Pattern Recognit. 

Letters, vol. 28, no. 1, pp. 166-172, Jan. 2007.   

[22] Z. Wang and E.P. Simoncelli, “Local phase coherence and the perception of blur”, in Adv. Neural Information 

Processing Systems., 2004, pp. 786-792. 

[23] R. Hassen, Z. Wang, and M. Salama, “No-reference image sharpness assessment based on local phase coherence 

measurement”, in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2010, pp. 2434-2437. 

[24] D. Gabor, “Theory of communication”, J. Inst. Elec. Eng., vol. 93, no. III, pp. 429-457, 1946. 

[25] D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells”, J. Opt. 

Soc. Am. A, vol. 4, no. 12, pp. 2379-2394, Dec. 1987. 



 21

[26] C. Mancas-Thillou and B. Gosselin, “Character segmentation-by-recognition using log-Gabor filters”, in Proc. Int. 

Conf. Pattern Recognit., 2006, pp. 901-904. 

[27] S. Fischer, F. Šroubek, L. Perrinet, R. Redondo, and G. Cristóbal, “Self-invertible 2D log-Gabor wavelets”, Int. J. 

Computer Vision, vol. 75, no. 2, pp. 231-246, Nov. 2007.  

[28] W. Wang, J. Li, F. Huang, and H. Feng, “Design and implementation of log-Gabor filter in fingerprint image 

enhancement”, Pattern Recognit. Letters, vol. 29, no. 3, pp. 301-308, Feb. 2008. 

[29] R. Jain, R. Kasturi, and B.G. Schunck, Machine Vision. McGraw-Hill, Inc, 1995. 

[30] B. Jähne, H. Haubecker, and P. Geibler, Handbook of Computer Vision and Applications. Academic Press, 1999. 

[31] C. Yang and S.H. Kwok, “Efficient gamut clipping for color image processing using LHS and YIQ”, Optical 

Engineering, vol. 42, no. 3, pp.701-711, Mar. 2003. 

[32] E.C. Larson and D.M. Chandler, “Categorical Image Quality (CSIQ) Database”, http://vision.okstate.edu/csiq. 

[33] H.R. Sheikh, K. Seshadrinathan, A.K. Moorthy, Z. Wang, A.C. Bovik, and L.K. Cormack, “Image and video 

quality assessment research at LIVE”, http://live.ece.utexas.edu/research/quality. 

[34] A. Ninassi, P. Le Callet, and F. Autrusseau, “Subjective quality assessment-IVC database”, 

http://www2.irccyn.ec-nantes.fr/ivcdb. 

[35] Y. Horita, K. Shibata, Y. Kawayoke, and Z.M. Parves Sazzad, “MICT Image Quality Evaluation Database”, 

http://mict.eng.u-toyama.ac.jp/mict/index2.html. 

[36] D.M. Chandler and S.S. Hemami, “A57 database”, http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html. 

[37] Z. Wang, “SSIM Index for Image Quality Assessment”, http://www.ece.uwaterloo.ca/~z70wang/research/ssim/. 

[38] M. Gaubatz and S.S. Hemami, “MeTriX MuX Visual Quality Assessment Package”, 

http://foulard.ece.cornell.edu/gaubatz/metrix_mux.  

[39] VQEG, “Final report from the video quality experts group on the validation of objective models of video quality 

assessment”, http://www.vqeg.org, 2000. 


