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Abstract – It is an important task to faithfully evaluate the perceptual quality of output images in many 

applications such as image compression, image restoration and multimedia streaming. A good image quality 

assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally 

efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation 

of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, 

called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, 

while different local structures in a distorted image suffer different degrees of degradations. This motivates us 

to explore the use of global variation of gradient based local quality map for overall image quality prediction. 

We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images 

combined with a novel pooling strategy – the standard deviation of the GMS map – can predict accurately 

perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA 

methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be 

downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.  

 

Index Terms – Gradient magnitude similarity, image quality assessment, standard deviation pooling, full 

reference 

 
 



 2

I. INTRODUCTION 

It is an indispensable step to evaluate the quality of output images in many image processing applications such 

as image acquisition, compression, restoration, transmission, etc. Since human beings are the ultimate 

observers of the processed images and thus the judges of image quality, it is highly desired to develop 

automatic approaches that can predict perceptual image quality consistently with human subjective evaluation. 

The traditional mean square error (MSE) or peak signal to noise ratio (PSNR) correlates poorly with human 

perception, and hence researchers have been devoting much effort in developing advanced perception-driven 

image quality assessment (IQA) models [2, 25]. IQA models can be classified [3] into full reference (FR) ones, 

where the pristine reference image is available, no reference ones, where the reference image is not available, 

and reduced reference ones, where partial information of the reference image is available.  

This paper focuses on FR-IQA models, which are widely used to evaluate image processing algorithms by 

measuring the quality of their output images. A good FR-IQA model can shape many image processing 

algorithms, as well as their implementations and optimization procedures [1]. Generally speaking, there are 

two strategies for FR-IQA model design. The first strategy follows a bottom-up framework [3, 30], which 

simulates the various processing stages in the visual pathway of human visual system (HVS), including visual 

masking effect [32], contrast sensitivity [33], just noticeable differences [34], etc. However, HVS is too 

complex and our current knowledge about it is far from enough to construct an accurate bottom-up IQA 

framework. The second strategy adopts a top-down framework [3, 30, 4-8], which aims to model the overall 

function of HVS based on some global assumptions on it. Many FR-IQA models follow this framework. The 

well-known Structure SIMilarity (SSIM) index [8] and its variants, Multi-Scale SSIM (MS-SSIM) [17] and 

Information Weighted SSIM (IW-SSIM) [16], assume that HVS tends to perceive the local structures in an 

image when evaluating its quality. The Visual Information Fidelity (VIF) [23] and Information Fidelity 

Criteria (IFC) [22] treat HVS as a communication channel and they predict the subjective image quality by 

computing how much the information within the perceived reference image is preserved in the perceived 

distorted one. Other state-of-the-art FR-IQA models that follow the top-down framework include Ratio of 

Non-shift Edges (rNSE) [18, 24], Feature SIMilarity (FSIM) [7], etc. A comprehensive survey and comparison 

of state-of-the-art IQA models can be found in [30, 14]. 
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Figure 1: The flowchart of a class of two-step FR-IQA models. 

 

 
Aside from the two different strategies for FR-IQA model design, many IQA models share a common 

two-step framework [16, 4-8], as illustrated in Fig. 1. First, a local quality map (LQM) is computed by locally 

comparing the distorted image with the reference image via some similarity function. Then a single overall 

quality score is computed from the LQM via some pooling strategy. The simplest and widely used pooling 

strategy is average pooling, i.e., taking the average of local quality values as the overall quality prediction 

score. Since different regions may contribute differently to the overall perception of an image’s quality, the 

local quality values can be weighted to produce the final quality score. Example weighting strategies include 

local measures of information content [9, 16], content-based partitioning [19], assumed visual fixation [20], 

visual attention [10] and distortion based weighting [9, 10, 29]. Compared with average pooling, weighted 

pooling can improve the IQA accuracy to some extent; however, it may be costly to compute the weights. 

Moreover, weighted pooling complicates the pooling process and can make the predicted quality scores more 

nonlinear w.r.t. the subjective quality scores (as shown in Fig. 5). 

In practice,  an IQA model should be not only effective (i.e., having high quality prediction accuracy) but 

also efficient (i.e., having low computational complexity). With the increasing ubiquity of digital imaging and 

communication technologies in our daily life, there is an increasing vast amount of visual data to be evaluated. 

Therefore, efficiency has become a critical issue of IQA algorithms. Unfortunately, effectiveness and 

efficiency are hard to achieve simultaneously, and most previous IQA algorithms can reach only one of the 

two goals. Towards contributing to filling this need, in this paper we develop an efficient FR-IQA model, 

called gradient magnitude similarity deviation (GMSD). GMSD computes the LQM by comparing the 
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gradient magnitude maps of the reference and distorted images, and uses standard deviation as the pooling 

strategy to compute the final quality score. The proposed GMSD is much faster than most state-of-the-art 

FR-IQA methods, but supplies surprisingly competitive quality prediction performance.  

Using image gradient to design IQA models is not new. The image gradient is a popular feature in IQA [4-7, 

15, 19] since it can effectively capture image local structures, to which the HVS is highly sensitive.  The most 

commonly encountered image distortions, including noise corruption, blur and compression artifacts, will lead 

to highly visible structural changes that “pop out” of the gradient domain. Most gradient based FR-IQA 

models [5-7, 15] were inspired by SSIM [8]. They first compute the similarity between the gradients of 

reference and distorted images, and then compute some additional information, such as the difference of 

gradient orientation, luminance similarity and phase congruency similarity, to combine with the gradient 

similarity for pooling. However, the computation of such additional information can be expensive and often 

yields small performance improvement. 

Without using any additional information, we find that using the image gradient magnitude alone can still 

yield highly accurate quality prediction. The image gradient magnitude is responsive to artifacts introduced by 

compression, blur or additive noise, etc. (Please refer to Fig. 2 for some examples.) In the proposed GMSD 

model, the pixel-wise similarity between the gradient magnitude maps of reference and distorted images is 

computed as the LQM of the distorted image. Natural images usually have diverse local structures, and 

different structures suffer different degradations in gradient magnitude. Based on the idea that the global 

variation of local quality degradation can reflect the image quality, we propose to compute the standard 

deviation of the gradient magnitude similarity induced LQM to predict the overall image quality score. The 

proposed standard deviation pooling based GMSD model leads to higher accuracy than all state-of-the-art IQA 

metrics we can find, and it is very efficient, making large scale real time IQA possible.  

The rest of the paper is organized as follows. Section II presents the development of GMSD in detail. 

Section III presents extensive experimental results, discussions and computational complexity analysis of the 

proposed GMSD model. Finally, Section IV concludes the paper. 
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II. GRADIENT MAGNITUDE SIMILARITY DEVIATION 

A. Gradient Magnitude Similarity 

The image gradient has been employed for FR-IQA in different ways [3-7], [15]. Most gradient based FR-IQA 

methods adopt a similarity function which is similar to that in SSIM [8] to compute gradient similarity. In 

SSIM, three types of similarities are computed: luminance similarity (LS), contrast similarity (CS) and 

structural similarity (SS). The product of the three similarities is used to predict the image local quality at a 

position. Inspired by SSIM, Chen et al. proposed gradient SSIM (G-SSIM) [6]. They retained the LS term of 

SSIM but applied the CS and SS similarities to the gradient magnitude maps of reference image (denoted by r) 

and distorted image (denoted by d). As in SSIM, average pooling is used in G-SSIM to yield the final quality 

score. Cheng et al. [5] proposed a geometric structure distortion (GSD) metric to predict image quality, which 

computes the similarity between the gradient magnitude maps, the gradient orientation maps and contrasts of r 

and d. Average pooling is also used in GSD. Liu et al. [15] also followed the framework of SSIM. They 

predicted the image quality using a weighted summation (i.e., a weighted pooling strategy is used) of the 

squared luminance difference and the gradient similarity. Zhang et al. [7] combined the similarities of phase 

congruency maps and gradient magnitude maps between r and d. A phase congruency based weighted pooling 

method is used to produce the final quality score. The resulting Feature SIMilarity (FSIM) model is among the 

leading FR-IQA models in term of prediction accuracy. However, the computation of phase congruency 

features is very costly. 

For digital images, the gradient magnitude is defined as the root mean square of image directional gradients 

along two orthogonal directions. The gradient is usually computed by convolving an image with a linear filter 

such as the classic Roberts, Sobel, Scharr and Prewitt filters or some task-specific ones [26, 27, 28]. For 

simplicity of computation and to introduce a modicum of noise-insensitivity, we utilize the Prewitt filter to 

calculate the gradient because it is the simplest one among the 3×3 template gradient filters. By using other 

filters such as the Sobel and Scharr filters, the proposed method will have similar IQA results. The Prewitt 

filters along horizontal (x) and vertical (y) directions are defined as: 
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Convolving hx and hy with the reference and distorted images yields the horizontal and vertical gradient 

images of r and d. The gradient magnitudes of r and d at location i, denoted by mr(i) and md(i), are computed 

as follows: 

2 2( ) ( ) ( ) ( ) ( )r x yi i i= ⊗ + ⊗m r h r h                                                     (2) 

2 2( ) ( ) ( ) ( ) ( )d x yi i i= ⊗ + ⊗m d h d h                                                    (3) 

where symbol “ ⊗ ” denotes the convolution operation. 

 With the gradient magnitude images mr and md in hand, the gradient magnitude similarity (GMS) map is 

computed as follows: 
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where c is a positive constant that supplies numerical stability. (The selection of c will be discussed in Section 

III-B.) The GMS map is computed in a pixel-wise manner; nonetheless, please note that a value mr(i) or md(i) 

in the gradient magnitude image is computed from a small local patch in the original image r or d.  

The GMS map serves as the local quality map (LQM) of the distorted image d. Clearly, if mr(i) and md(i) 

are the same, GMS(i) will achieve the maximal value 1. Let’s use some examples to analyze the GMS induced 

LQM. The most commonly encountered distortions in many real image processing systems are JPEG 

compression, JPEG2000 compression, additive white noise (AWN) and Gaussian blur (GB). In Fig. 2, for each 

of the four types of distortions, two reference images with different contents and their corresponding distorted 

images are shown (the images are selected from the LIVE database [11]). Their gradient magnitude images (mr 

and md) and the corresponding GMS maps are also shown. In the GMS map, the brighter the gray level, the 

higher the similarity, and thus the higher the predicted local quality. These images contain a variety of 

important structures such as large scale edges, smooth areas and fine textures, etc. A good IQA model should 

be adaptable to the broad array of possible natural scenes and local structures. 
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Figure 2: Examples of reference (r) and distorted (d) images, their gradient magnitude images (mr and md), and the 
associated gradient magnitude similarity (GMS) maps, where brighter gray level means higher similarity. The 
highlighted regions (by red curve) are with clear structural degradations in the gradient magnitude domain. From top to 
bottom, the four types of distortions are additive white noise (AWN), JPEG compression, JPEG2000 compression, and 
Gaussian blur (GB). For each type of distortion, two images with different contents are selected from the LIVE database 
[11]. For each distorted image, its subjective quality score (DMOS) and GMSD index are listed. Note that distorted 
images with similar DMOS scores have similar GMSD indices, though their contents are totally different.  
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In Fig. 2, examples of structure degradation are shown in the gradient magnitude domain. Typical areas are 

highlighted with red curves. From the first group, it can be seen that the artifacts caused by AWN are masked 

in the large structure and texture areas, while the artifacts are more visible in flat areas. This is broadly 

consistent with human perception. In the second group, the degradations caused by JPEG compression are 

mainly blocking effects (see the background area of image parrots and the wall area of image house) and loss 

of fine details. Clearly, the GMS map is highly responsive to these distortions. Regarding JPEG2000 

compression, artifacts are introduced in the vicinity of edge structures and in the textured areas. Regarding GB, 

the whole GMS map is clearly changed after image distortion. All these observations imply that the image 

gradient magnitude is a highly relevant feature for the task of IQA. 

 

 

   
(a)  

   
(b) 

 
Figure 3: Comparison beween GMSM and GMSD as a subjective quality indicator. Note that like DMOS, GMSD is a 
distortion index (a lower DMOS/GMSD value means higher quality), while GMSM is a quality index (a highr GMSM 
value means higher quality). (a) Original image Fishing, its Gaussian noise contaminated version (DMOS=0.4403; 
GMSM=0.8853; GMSD=0.1420), and their gradient simiarity map. (b) Original image Flower, its blurred version 
(DMOS=0.7785; GMSM=0.8745; GMSD=0.1946), and their gradient simiarity map. Based on the subjective DMOS, 
image Fishing has much higher quality than image Flower. GMSD gives the correct judgement but GMSM fails.    
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B. Pooling with Standard Deviation 

The LQM reflects the local quality of each small patch in the distorted image. The image overall quality score 

can then be estimated from the LQM via a pooling stage. The most commonly used pooling strategy is average 

pooling, i.e., simply averaging the LQM values as the final IQA score. We refer to the IQA model by applying 

average pooling to the GMS map as Gradient Magnitude Similarity Mean (GMSM):  

1

1 ( )N

i
GMSM GMS i

N =∑=                                                               (5) 

where N is the total number of pixels in the image. Clearly, a higher GMSM score means higher image quality. 

Average pooling assumes that each pixel has the same importance in estimating the overall image quality. As 

introduced in Section I, researchers have devoted much effort to design weighted pooling methods [9, 10, 16, 

19, 20 and 29]; however, the improvement brought by weighted pooling over average pooling is not always 

significant [31] and the computation of weights can be costly.  

We propose a new pooling strategy with the GMS map. A natural image generally has a variety of local 

structures in its scene. When an image is distorted, the different local structures will suffer different 

degradations in gradient magnitude. This is an inherent property of natural images. For example, the 

distortions introduced by JPEG2000 compression include blocking, ringing, blurring, etc. Blurring will cause 

less quality degradation in flat areas than in textured areas, while blocking will cause higher quality 

degradation in flat areas than in textured areas. However, the average pooling strategy ignores this fact and it 

cannot reflect how the local quality degradation varies. Based on the idea that the global variation of image 

local quality degradation can reflect  its overall quality, we propose to compute the standard deviation of the 

GMS map and take it as the final IQA index, namely Gradient Magnitude Similarity Deviation (GMSD): 

( )2

1

1 ( )N

iN
GMSD GMS i GMSM

=
= −∑                                                (6) 

Note that the value of GMSD reflects the range of distortion severities in an image. The higher the GMSD 

score, the larger the distortion range, and thus the lower the image perceptual quality.  

In Fig. 3, we show two reference images from the CSIQ database [12], their distorted images and the 

corresponding GMS maps. The first image Fishing is corrupted by additive white noise, and the second image 

Flower is Gaussian blurred. From the GMS map of distorted image Fishing, one can see that its local quality is 
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more homogenous, while from the GMS map of distorted image Flower, one can see that its local quality in the 

center area is much worse than at other areas. The human subjective DMOS scores of the two distorted images 

are 0.4403 and 0.7785, respectively, indicating that the quality of the first image is obviously better than the 

second one. (Note that like GMSD, DMOS also measures distortion; the lower it is, the better the image 

quality.) By using GMSM, however, the predicted quality scores of the two images are 0.8853 and 0.8745, 

respectively, indicating that the perceptual quality of the first image is similar to the second one, which is 

inconsistent to the subjective DMOS scores.  

By using GMSD, the predicted quality scores of the two images are 0.1420 and 0.1946, respectively, which 

is a consistent judgment relative to the subjective DMOS scores, i.e., the first distorted image has better quality 

than the second one. More examples of the consistency between GMSD and DMOS can be found in Fig. 2. For 

each distortion type, the two images of different contents have similar DMOS scores, while their GMSD 

indices are also very close. These examples validate that the deviation pooling strategy coupled with the GMS 

quality map can accurately predict the perceptual image quality. 

 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Databases and Evaluation Protocols 

The performance of an IQA model is typically evaluated from three aspects regarding its prediction power [21]: 

prediction accuracy, prediction monotonicity, and prediction consistency. The computation of these indices 

requires a regression procedure to reduce the nonlinearity of predicted scores. We denote by Q, Qp and S the 

vectors of the original IQA scores, the IQA scores after regression and the subjective scores, respectively. The 

logistic regression function is employed for the nonlinear regression [21]: 

1 4 5
2 3

1 1( )
2 exp( ( ))pQ Q

Q
β β β

β β
= − + +

−
                                                 (7) 

where β1, β2, β3, β4 and β5 are regression model parameters.  

After the regression, 3 correspondence indices can be computed for performance evaluation [21]. The first 

one is the Pearson linear Correlation Coefficient (PCC) between Qp and S, which is to evaluate the prediction 

accuracy: 
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where PQ and S  are the mean-removed vectors of QP and S, respectively, and subscript “T” means transpose. 

The second index is the Spearman Rank order Correlation coefficient (SRC) between Q and S, which is to 

evaluate the prediction monotonicity: 

2
1

2

6
( , ) 1

( 1)

n
ii

d
SRC Q S

n n
== −
−

∑                         (9) 

where di is the difference between the ranks of each pair of samples in Q and S, and n is the total number of 

samples. Note that the logistic regression does not affect the SRC index, and we can compute it before 

regression. The third index is the root mean square error (RMSE) between Qp and S, which is to evaluate the 

prediction consistency: 

( , ) ( ) ( ) /T
P P PRMSE Q S Q S Q S n= − −                                                    (10) 

With the SRC, PCC and RMSE indices, we evaluate the IQA models on three large scale and publicly 

accessible IQA databases: LIVE [11], CSIQ [12], and TID2008 [13]. The LIVE database consists of 779 

distorted images generated from 29 reference images. Five types of distortions are applied to the reference 

images at various levels: JPEG2000 compression, JPEG compression, additive white noise (AWN), Gaussian 

blur (GB) and simulated fast fading Rayleigh channel (FF). These distortions reflect a broad range of image 

impairments, for example, edge smoothing, block artifacts and random noise. The CSIQ database consists of 

30 reference images and their distorted counterparts with six types of distortions at five different distortion 

levels. The six types of distortions include JPEG2000, JPEG, AWN, GB, global contrast decrements (CTD), 

and additive pink Gaussian noise (PGN). There are a total of 886 distorted images in it. The TID2008 database 

is the largest IQA database to date. It has 1,700 distorted images, generated from 25 reference images with 17 

types of distortions at 4 levels. Please refer to [13] for details of the distortions. Each image in these databases 

has been evaluated by human subjects under controlled conditions, and then assigned a quantitative subjective 

quality score: Mean Opinion Score (MOS) or Difference MOS (DMOS). 

To demonstrate the performance of GMSD, we compare it with 11 state-of-the-art and representative 

FR-IQA models, including PSNR, IFC [22], VIF [23], SSIM [8], MS-SSIM [17], MAD [12], FSIM [7], 
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IW-SSIM [16], G-SSIM [6], GSD [5] and GS [15]. Among them, FSIM, G-SSIM, GSD and GS explicitly 

exploit gradient information. Except for G-SSIM and GSD, which are implemented by us, the source codes of 

all the other models were obtained from the original authors. To more clearly demonstrate the effectiveness of 

the proposed deviation pooling strategy, we also present the results of GMSM which uses average pooling. As 

in most of the previous literature [7-8, 16-17], all of the competing algorithms are applied to the luminance 

channel of the test images. 

 

B. Implementation of GMSD 

The only parameter in the proposed GMSM and GMSD models is the constant c in Eq. (4). Apart from 

ensuring the numerical stability, the constant c also plays a role in mediating the contrast response in low 

gradient areas. We normalize the pixel values of 8-bit luminance image into range [0, 1]. Fig. 4 plots the SRC 

curves against c by applying GMSD to the LIVE, CSIQ and TID2008 databases. One can see that for all the 

databases, GMSD shows similar preference to the value of c. In our implementation, we set c=0.0026. In 

addition, as in the implementations of SSIM [8] and FSIM [7], the images r and d are first filtered by a 2 2 

average filter, and then down-sampled by a factor of 2. MATLAB source code that implements GMSD can be 

downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm. 

 

 

Figure 4: The performance of GMSD in terms of SRC vs. constant c on the three databases. 

 

C. Performance Comparison 

In Table I, we compare the competing IQA models’ performance on each of the three IQA databases in terms 
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of SRC, PCC and RMSE. The top three models for each evaluation criterion are shown in boldface. We can see 

that the top models are mostly GMSD (8 times), MAD (6 times), FSIM (5 times) and VIF (5 times). In terms of 

all the three criteria (SRC, PCC and RMSE), the proposed GMSD outperforms all the other models on the 

TID2008 and CSIQ databases. On the LIVE database, MAD performs the best, and VIF, FSIM and GMSD 

perform almost the same. Compared with gradient based models such as GSD, G-SSIM and GS, GMSD 

outperforms them by a large margin. Compared with GMSM, the superiority of GMSD is obvious, 

demonstrating that the proposed deviation pooling strategy works much better than the average pooling 

strategy on the GMS induced LQM. The FSIM algorithm also employs gradient similarity. It has similar 

results to GMSD on the LIVE and TID2008 databases, but lags GMSD on the CSIQ database with a lower 

SRC/PCC and larger RMSE.  

 
Table I: Performance of the proposed GMSD and the other eleven competing FR-IQA models in terms of SRC, PCC, 
and RMSE on the LIVE, CSIQ and TID2008 databases. The top three models for each criterion are shown in boldface. 
 

IQA model 
LIVE (779 images) CSIQ (886 images) TID2008 (1700 images) Weighted Average 

SRC PCC RMSE SRC PCC RMSE SRC PCC RMSE SRC PCC 
PSNR 0.876 0.872 13.36 0.806 0.751 0.173 0.553 0.523 1.144 0.694 0.664 

IFC [22] 0.926 0.927 10.26 0.767 0.837 0.144 0.568 0.203 1.314 0.703 0.537 
GSD [5] 0.908 0.913 11.149 0.854 0.854 0.137 0.657 0.707 0.949 0.766 0.793 

G-SSIM [6] 0.918 0.920 10.74 0.872 0.874 0.127 0.731 0.760 0.873 0.811 0.827 
SSIM [8] 0.948 0.945 8.95 0.876 0.861 0.133 0.775 0.773 0.851 0.841 0.836 
VIF [23] 0.964 0.960 7.61 0.919 0.928 0.098 0.749 0.808 0.790 0.844 0.875 
GS [15] 0.956 0.951 8.43 0.911 0.896 0.116 0.850 0.842 0.723 0.891 0.882 

MS-SSIM [17] 0.951 0.949 8.619 0.913 0.899 0.115 0.854 0.845 0.717 0.892 0.883 
MAD[12] 0.967 0.968 6.907 0.947 0.950 0.082 0.834 0.829 0.751 0.894 0.893 

GMSM 0.960 0.956 8.049 0.929 0.913 0.107 0.848 0.837 0.735 0.895 0.884 
IW-SSIM [16] 0.957 0.952 8.35 0.921 0.914 0.106 0.856 0.858 0.689 0.896 0.895 

FSIM [7] 0.963 0.960 7.67 0.924 0.912 0.108 0.880 0.874 0.653 0.911 0.904 
GMSD 0.960 0.960 7.62 0.957 0.954 0.079 0.891 0.879 0.640 0.924 0.917 

 

In Fig. 5, we show the scatter plots of predicted quality scores against subjective DMOS scores for some 

representative models (PSNR, VIF, GS, IW-SSIM, MS-SSIM, MAD, FSIM, GMSM and GMSD) on the CSIQ 

database, which has six types of distortions (AWN, JPEG, JPEG2000, PGN, GB and CTD). One can observe 

that for FSIM, MAD, MS-SSIM, GMSM, IW-SSIM and GS, the distribution of predicted scores on the CTD 

distortion deviates much from the distributions on other types of distortions, degrading their overall 

performance. When the distortion is severe (i.e., large DMOS values), GS, GMSM and PSNR yield less 
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accurate quality predictions. The information fidelity based VIF performs very well on the LIVE database but 

not very well on the CSIQ and TID2008 databases. This is mainly because VIF does not predict the images’ 

quality consistently across different distortion types on these two databases, as can be observed from the 

scatter plots with CSIQ database in Fig. 5.  

In Table I, we also show the weighted average of SRC and PCC scores by the competing FR-IQA models 

over the three databases, where the weights were determined by the sizes (i.e., number of images) of the three 

databases. According to this, the top 3 models are GMSD, FSIM and IW-SSIM. Overall, the proposed GMSD 

achieves outstanding and consistent performance across the three databases.  

 

 

  

  

 
Figure 5: Scatter plots of predicted quality scores against the subjective quality scores (DMOS) by representative 
FR-IQA models on the CSIQ database. The six types of distortions are represented by different shaped colors.  
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LIVE PSNR
IFC

GSD

G-SSIM
SSIM VIF

MS-SSIM GS
MAD

GMSM

IW-SSIM
FSIM

GMSD

PSNR 0 0 0 0 0 0 0 0 0 0 0 0 0

IFC 1 0 1 0 0 0 0 0 0 0 0 0 0

GSD 1 0 0 0 0 0 0 0 0 0 0 0 0

G-SSIM 1 0 0 0 0 0 0 0 0 0 0 0 0

SSIM 1 1 1 1 0 0 0 0 0 0 0 0 0

VIF 1 1 1 1 1 0 1 1 0 0 1 0 0

MS-SSIM 1 1 1 1 0 0 0 0 0 0 0 0 0

GS 1 1 1 1 1 0 0 0 0 0 0 0 0

MAD 1 1 1 1 1 1 1 1 0 1 1 1 1

GMSM 1 1 1 1 1 0 1 0 0 0 0 0 0

IW-SSIM 1 1 1 1 1 0 0 0 0 0 0 0 0

FSIM 1 1 1 1 1 0 1 1 0 0 1 0 0

GMSD 1 1 1 1 1 0 1 1 0 0 1 0 0     

CSIQ PSNR
IFC

GSD

G-SSIM
SSIM VIF

MS-SSIM GS
MAD

GMSM

IW-SSIM
FSIM

GMSD

PSNR 0 0 0 0 0 0 0 0 0 0 0 0 0

IFC 1 0 0 0 0 0 0 0 0 0 0 0 0

GSD 1 0 0 0 0 0 0 0 0 0 0 0 0

G-SSIM 1 1 1 0 0 0 0 0 0 0 0 0 0

SSIM 1 1 0 0 0 0 0 0 0 0 0 0 0

VIF 1 1 1 1 1 0 1 1 0 1 1 1 0

MS-SSIM 1 1 1 1 1 0 0 0 0 0 0 0 0

GS 1 1 1 1 1 0 0 0 0 0 0 0 0

MAD 1 1 1 1 1 1 1 1 0 1 1 1 0

GMSM 1 1 1 1 1 0 1 1 0 0 0 0 0

IW-SSIM 1 1 1 1 1 0 1 1 0 0 0 0 0

FSIM 1 1 1 1 1 0 1 1 0 0 0 0 0

GMSD 1 1 1 1 1 1 1 1 0 1 1 1 0  
                            (a)                                                           (b) 

 
TID2008PSNR

IFC
GSD

G-SSIM
SSIM VIF

MS-SSIM GS
MAD

GMSM

IW-SSIM
FSIM

GMSD

PSNR 0 1 0 0 0 0 0 0 0 0 0 0 0

IFC 0 0 0 0 0 0 0 0 0 0 0 0 0

GSD 1 1 0 0 0 0 0 0 0 0 0 0 0

G-SSIM 1 1 1 0 0 0 0 0 0 0 0 0 0

SSIM 1 1 1 0 0 0 0 0 0 0 0 0 0

VIF 1 1 1 1 1 0 0 0 0 0 0 0 0

MS-SSIM 1 1 1 1 1 1 0 0 1 0 0 0 0

GS 1 1 1 1 1 1 0 0 0 0 0 0 0

MAD 1 1 1 1 1 1 0 0 0 0 0 0 0

GMSM 1 1 1 1 1 1 0 0 0 0 0 0 0

IW-SSIM 1 1 1 1 1 1 0 1 1 1 0 0 0

FSIM 1 1 1 1 1 1 1 1 1 1 1 0 0

GMSD 1 1 1 1 1 1 1 1 1 1 1 0 0  
(c) 

 
Figure 6: The results of statistical significance tests of the competing IQA models on the (a) LIVE, (b) CSIQ and (c) 
TID2008 databases. A value of ‘1’ (highlighted in green) indicates that the model in the row is significantly better than 
the model in the column, while a value of ‘0’ (highlighted in red) indicates that the first model is not significantly better 
than the second one. Note that the proposed GMSD is significantly better than most of the competitors on all the three 
databases, while no IQA model is significantly better than GMSD. 

 

In order to make statistically meaningful conclusions on the models’ performance, we further conducted a 

series of hypothesis tests based on the prediction residuals of each model after nonlinear regression. The 

results of significance tests are shown in Fig. 6. By assuming that the model’s prediction residuals follow the 

Gaussian distribution (the Jarque-Bera test [35] shows that only 3 models on LIVE and 4 models on CSIQ 

violate this assumption), we apply the left-tailed F-test to the residuals of every two models to be compared. A 

value of H=1 for the left-tailed F-test at a significance level of 0.05 means that the first model (indicated by the 

row in Fig. 6) has better IQA performance than the second model (indicated by the column in Fig. 6) with a 
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confidence greater than 95%. A value of H=0 means that the first model is not significantly better than the 

second one. If H=0 always holds no matter which one of the two models is taken as the first one, then the two 

models have no significant difference in performance. Figs. 6(a) ~ 6(c) show the significance test results on the 

LIVE, CSIQ and TID2008 databases, respectively. We see that on the LIVE database, GMSD, VIF, GMSM 

and FSIM all perform very well and they have no significant difference, while MAD performs the best on this 

database. On the CSIQ database, GMSD is significantly better than all the other models except for MAD. On 

the TID2008 database, GMSD is significantly better than all the other IQA models except for FSIM. Note that 

on all the three databases, no IQA model performs significantly better than GMSD except that MAD is 

significantly better than GMSD on LIVE. 

 

D. Performance Comparison on Individual Distortion Types 

To more comprehensively evaluate an IQA model’s ability to predict image quality degradations caused by 

specific types of distortions, we compare the performance of competing methods on each type of distortion.  

The results are listed in Table II. To save space, only the SRC scores are shown. There are a total of 28 groups 

of distorted images in the three databases. In Table II, we use boldface font to highlight the top 3 models in 

each group. One can see that GMSD is among the top 3 models 14 times, followed by VIF and GS, which are 

among the top 3 models 13 and 11 times, respectively. However, neither GS nor VIF ranks among the top 3 in 

terms of overall performance on the 3 databases. The classical PSNR also performs among the top 3 for 8 

groups, and a common point of these 8 groups is that they are all noise contaminated. PSNR is, indeed, an 

effective measure of perceptual quality of noisy images. However, PSNR is not able to faithfully measure the 

quality of images impaired by other types of distortions. 

Generally speaking, performing well on specific types of distortions does not guarantee that an IQA model 

will perform well on the whole database with a broad spectrum of distortion types. A good IQA model should 

also predict the image quality consistently across different types of distortions. Referring to the scatter plots in 

Fig. 5, it can be seen that the scatter plot of GMSD is more concentrated across different groups of distortion 

types. For example, its points corresponding to JPEG2000 and PGN distortions are very close to each other. 

However, the points corresponding to JPEG2000 and PGN for VIF are relatively far from each other. We can 

have similar observations for GS on the distortion types of PGN and CTD. This explains why some IQA 



 17

models perform well for many individual types of distortions but they do not perform well on the entire 

databases; that is, these IQA models behave rather differently on different types of distortions, which can be 

attributed to the different ranges of quality scores for those distortion types [43].  

 

Table II: Performance comparison of the IQA models on each individual distortion type in terms of SRC. 

 PSNR IFC GSD G-SSIM SSIM VIF GS MS-SSIM MAD GMSM IW-SSIM FSIM GMSD 

LIVE 
database 

JP2K 0.895 0.911 0.911 0.935 0.961 0.970 0.970 0.963 0.968 0.968 0.965 0.971 0.971 
JPEG 0.881 0.947 0.931 0.944 0.976 0.985 0.978 0.981 0.976 0.979 0.981 0.983 0.978 
AWN 0.985 0.938 0.879 0.926 0.969 0.986 0.977 0.973 0.984 0.967 0.967 0.965 0.974 
GB 0.782 0.958 0.964 0.968 0.952 0.973 0.952 0.954 0.946 0.959 0.972 0.971 0.957 
FF 0.891 0.963 0.953 0.948 0.956 0.965 0.940 0.947 0.957 0.943 0.944 0.950 0.942 

C
SIQ

 database 

AWN 0.936 0.843 0.732 0.810 0.897 0.957 0.944 0.951 0.954 0.962 0.938 0.926 0.968 
JPEG 0.888 0.941 0.927 0.927 0.954 0.970 0.963 0.947 0.961 0.959 0.966 0.966 0.965 
JP2K 0.936 0.925 0.913 0.932 0.960 0.967 0.965 0.963 0.975 0.957 0.968 0.968 0.972 
PGN 0.934 0.826 0.731 0.796 0.892 0.951 0.939 0.968 0.957 0.945 0.906 0.923 0.950 
GB 0.929 0.953 0.960 0.958 0.961 0.974 0.959 0.933 0.968 0.958 0.978 0.972 0.971 

CTD 0.862 0.487 0.948 0.851 0.793 0.934 0.936 0.971 0.921 0.933 0.954 0.942 0.904 

TID
2008 database 

AWN 0.907 0.581 0.535 0.574 0.811 0.880 0.861 0.953 0.839 0.887 0.787 0.857 0.918 
ANMC 0.899 0.546 0.479 0.556 0.803 0.876 0.809 0.913 0.826 0.877 0.792 0.851 0.898 
SCN 0.917 0.596 0.568 0.600 0.815 0.870 0.894 0.809 0.868 0.877 0.771 0.848 0.913 
MN 0.852 0.673 0.586 0.609 0.779 0.868 0.745 0.805 0.734 0.760 0.809 0.802 0.709 
HFN 0.927 0.732 0.661 0.728 0.873 0.907 0.895 0.821 0.886 0.915 0.866 0.909 0.919 
IMN 0.872 0.534 0.577 0.409 0.673 0.833 0.723 0.811 0.065 0.748 0.646 0.746 0.661 
QN 0.870 0.586 0.609 0.672 0.853 0.797 0.880 0.869 0.816 0.867 0.818 0.855 0.887 
GB 0.870 0.856 0.911 0.924 0.954 0.954 0.960 0.691 0.920 0.952 0.964 0.947 0.897 

DEN 0.942 0.797 0.878 0.880 0.953 0.916 0.972 0.859 0.943 0.966 0.947 0.960 0.975 
JPEG 0.872 0.818 0.839 0.859 0.925 0.917 0.939 0.956 0.927 0.939 0.918 0.928 0.952 
JP2K 0.813 0.944 0.923 0.944 0.962 0.971 0.976 0.958 0.971 0.973 0.974 0.977 0.980 
JGTE 0.752 0.791 0.880 0.855 0.868 0.859 0.879 0.932 0.866 0.882 0.859 0.871 0.862 
J2TE 0.831 0.730 0.722 0.758 0.858 0.850 0.894 0.970 0.839 0.877 0.820 0.854 0.883 
NEPN 0.581 0.842 0.770 0.754 0.711 0.762 0.739 0.868 0.829 0.744 0.772 0.749 0.760 
Block 0.619 0.677 0.811 0.810 0.846 0.832 0.886 0.861 0.797 0.899 0.762 0.849 0.897 
MS 0.696 0.425 0.441 0.715 0.723 0.510 0.719 0.738 0.516 0.630 0.707 0.669 0.649 

CTC 0.586 0.171 0.573 0.552 0.525 0.819 0.669 0.755 0.272 0.663 0.630 0.648 0.466 
 

The gradient based models G-SSIM and GSD do not show good performance on either many individual 

types of distortions or the entire databases. G-SSIM computes the local variance and covariance of gradient 

magnitude to gauge contrast and structure similarities. This may not be an effective use of gradient information. 

The gradient magnitude describes the local contrast of image intensity; however, the image local structures 

with different distortions may have similar variance of gradient magnitude, making G-SSIM less effective to 

distinguish those distortions. GSD combines the orientation differences of gradient, the contrast similarity and 

the gradient similarity; however, there is intersection between these kinds of information, making GSD less 

discriminative of image quality. GMSD only uses the gradient magnitude information but achieves highly 
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competitive results against the competing methods. This validates that gradient magnitude, coupled with the 

deviation pooling strategy, can serve as an excellent predictive image quality feature. 

  

E. Standard Deviation Pooling on Other IQA Models 

As shown in previous sections, the method of standard deviation (SD) pooling applied to the GMS map leads 

to significantly elevated performance of image quality prediction. It is therefore natural to wonder whether the 

SD pooling strategy can deliver similar performance improvement on other IQA models. To explore this, we 

modified six representative FR-IQA methods, all of which are able to generate an LQM of the test image: MSE 

(which is equivalent to PSNR but can produce an LQM), SSIM [8], MS-SSIM [17], FSIM [7], G-SSIM [6] and 

GSD [5]. The original pooling strategies of these methods are either average pooling or weighted pooling. For 

MSE, SSIM, G-SSIM, GSD and FSIM, we directly applied the SD pooling to their LQMs to yield the 

predicted quality scores. For MS-SSIM, we applied SD pooling to its LQM on each scale, and then computed 

the product of the predicted scores on all scales as the final score. In Table III, the SRC results of these methods 

by using their nominal pooling strategies and the SD pooling strategy are listed.  

Table III makes it clear that except for MSE, all the other IQA methods fail to gain in performance by using 

SD pooling instead of their nominal pooling strategies. The reason may be that in these methods, the LQM is 

generated using multiple, diverse types of features. The interaction between these features may complicate the 

estimation of image local quality so that SD pooling does not apply. By contrast, MSE and GMSD use only the 

original intensity and the intensity of gradient magnitude, respectively, to calculate the LQM.  

 

Table III: SRC results of SD pooling on some representative IQA models.  

Database Average or weighted pooling SD pooling Performance gain 
LIVE CSIQ TID2008 LIVE CSIQ TID2008 LIVE CSIQ TID2008

MSE 0.876 0.806 0.553 0.877 0.834 0.580 0.18% 3.55% 4.88% 
SSIM [8] 0.948 0.876 0.775 0.917 0.817 0.756 -3.22% -6.71% -2.44% 
MS-SSIM [17] 0.952 0.877 0.809 0.921 0.826 0.650 -3.28% -5.86% -19.71% 
FSIM [7] 0.963 0.924 0.880 0.960 0.956 0.892 -0.33% 3.52% 1.26% 
G-SSIM [6] 0.918 0.872 0.731 0.763 0.757 0.708 -16.93% -13.20% -3.09% 
GSD [5] 0.914 0.828 0.576 0.669 0.611 0.568 -26.76% -26.20% -1.36% 

 
 

F. Complexity 

In applications such as real-time image/video quality monitoring and prediction, the complexity of 
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implemented IQA models becomes crucial. We thus analyze the computational complexity of GMSD, and 

then compare the competing IQA models in terms of running time.  

Suppose that an image has N pixels. The classical PSNR has the lowest complexity, and it only requires N 

multiplications and 2N additions. The main operations in the proposed GMSD model include calculating 

image gradients (by convolving the image with two 3×3 template integer filters), thereby producing gradient 

magnitude maps, generating the GMS map, and deviation pooling. Overall, it requires 19N multiplications and 

16N additions to yield the final quality score. Meanwhile, it only needs to store at most 4 directional gradient 

images (each of size N) in memory (at the gradient calculation stage). Therefore, both the time and memory 

complexities of GMSD are O(N). In other words, the time and memory cost of GMSD scales linearly with 

image size. This is a very attractive property since image resolutions have been rapidly increasing with the 

development of digital imaging technologies. In addition, the computation of image gradients and GMS map 

can be parallelized by partitioning the reference and distorted images into blocks if the image size is very large.  

 

Table IV: Running time of the competing IQA models. 

Models Running time (s) 
MAD [12] 2.0715 
IFC [22] 1.1811 
VIF [23] 1.1745 
FSIM [7] 0.5269 

IW-SSIM [16] 0.5196 
MS-SSIM [17] 0.1379 

GS [15] 0.0899 
GSD [5] 0.0481 
SSIM [8] 0.0388 

G-SSIM [6] 0.0379 
GMSD 0.0110 
GMSM 0.0079 
PSNR 0.0016 

 

Table IV shows the running time of the 13 IQA models on an image of size 512 512.  All algorithms were 

run on a ThinkPad T420S notebook with Intel Core i7-2600M CPU@2.7GHz and 4G RAM. The software 

platform used to run all algorithms was MATLAB R2010a (7.10). Apart from G-SSIM and GSD, the 

MATLAB source codes of all the other methods were obtained from the original authors. (It should be noted 

that whether the code is optimized may affect the running time of an algorithm.) Clearly, PSNR is the fastest, 

followed by GMSM and GMSD. Specifically, it costs only 0.0110 second for GMSD to process an image of 
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size 512 512, which is 3.5 times faster than SSIM, 47.9 times faster than FSIM, and 106.7 times faster than 

VIF.  

 

G. Discussions 

Apart from being used purely for quality assessment tasks, it is expected that an IQA algorithm can be more 

pervasively used in many other applications. According to [1], the most common applications of IQA 

algorithms can be categorized as follows: 1) quality monitoring; 2) performance evaluation; 3) system 

optimization; and 4) perceptual fidelity criteria on visual signals. Quality monitoring is usually conducted by 

using no reference IQA models, while FR-IQA models can be applied to the other three categories. Certainly, 

SSIM proved to be a milestone in the development of FR-IQA models. It has been widely and successfully 

used in the performance evaluation of many image processing systems and algorithms, such as image 

compression, restoration and communication, etc. Apart from performance evaluation, thus far, SSIM is not 

yet pervasively used in other applications. The reason may be two-fold, as discussed below. The proposed 

GMSD model might alleviate these problems associated with SSIM, and has potentials to be more pervasively 

used in a wider variety of image processing applications. 

First, SSIM is difficult to optimize when it is used as a fidelity criterion on visual signals. This largely 

restricts its applications in designing image processing algorithms such as image compression and restoration. 

Recently, some works [36-38] have been reported to adopt SSIM for image/video perceptual compression. 

However, these methods are not “one-pass” and they have high complexity. Compared with SSIM, the 

formulation of GMSD is much simpler. The calculation is mainly on the gradient magnitude maps of reference 

and distorted image, and the correlation of the two maps. GMSD can be more easily optimized than SSIM, and 

it has greater potentials to be adopted as a fidelity criterion for designing perceptual image compression and 

restoration algorithms, as well as for optimizing network coding and resource allocation problems.  

Second, the time and memory complexity of SSIM is relatively high, restricting its use in applications 

where low-cost and real-time implementation is required. GMSD is much faster and more scalable than SSIM, 

and it can be easily adopted for tasks such as real time performance evaluation, system optimization, etc. 

Considering that mobile and portable devices are becoming much more popular, the merits of simplicity, low 

complexity and high accuracy of GMSD make it very attractive and competitive for mobile applications.  
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In addition, it should be noted that with the rapid development of digital image acquisition and display 

technologies, and the increasing popularity of mobile devices and websites such as YouTube and Facebook, 

current IQA databases may not fully represent the way that human subjects view digital images. On the other 

hand, the current databases, including the three largest ones TID2008, LIVE and CSIQ, mainly focus on a few 

classical distortion types, and the images therein undergo only a single type of distortion. Therefore, there is a 

demand to establish new IQA databases, which should contain images with multiple types of distortions [40], 

images collected from mobile devices [41], and images of high definition. 

   

IV. CONCLUSION 

The usefulness and effectiveness of image gradient for full reference image quality assessment (FR-IQA) were 

studied in this paper. We devised a simple FR-IQA model called gradient magnitude similarity deviation 

(GMSD), where the pixel-wise gradient magnitude similarity (GMS) is used to capture image local quality, 

and the standard deviation of the overall GMS map is computed as the final image quality index. Such a 

standard deviation based pooling strategy is based on the consideration that the variation of local quality, 

which arises from the diversity of image local structures, is highly relevant to subjective image quality. 

Compared with state-of-the-art FR-IQA models, the proposed GMSD model performs better in terms of both 

accuracy and efficiency, making GMSD an ideal choice for high performance IQA applications. 
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