Joint Scheduling of MapReduce Jobs with Servers:
Performance Bounds and Experiments

Yi Yuan*, Dan Wang*T, Jiangchuan Liu?
*Department of Computing, The Hong Kong Polytechnic University
TThe Hong Kong Polytechnic University Shenzhen Research Institute

¥School of Computing Science, Simon Fraser University
Email: {csyiyuan, csdwang} @comp.polyu.edu.hk, jcliu@cs.sfu.ca

Abstract—MapReduce has achieved tremendous success for
large-scale data processing in data centers. A key feature dis-
tinguishing MapReduce from previous parallel models is that
it interleaves parallel and sequential computation. Past schemes,
and especially their theoretical bounds, on general parallel models
are therefore, unlikely to be applied to MapReduce directly. There
are many recent studies on MapReduce job and task scheduling.
These studies assume that the servers are assigned in advance.
In current data centers, multiple MapReduce jobs of different
importance levels run together. In this paper, we investigate a
schedule problem for MapReduce taking server assignment into
consideration as well. We formulate a MapReduce server-job
organizer problem (MSJO) and show that it is NP-complete. We
develop a 3-approximation algorithm and a fast heuristic. We e-
valuate our algorithms through both simulations and experiments
on Amazon EC2 with an implementation in Hadoop. The results
confirm the advantage of our algorithms.

I. INTRODUCTION

Recently the amount of data of various applications has
increased beyond the processing capability of single machines.
To cope with such data, scale out parallel processing is widely
accepted. MapReduce [1], the de facto standard framework
in parallel processing for big data applications, has become
widely adopted. Nevertheless, MapReduce framework is also
criticized for its inefficiency in performance and as “a major
step backward” [2]. This is partially because that, performance-
wise, the MapReduce framework has not been deeply studied
enough as compared to decades of study and fine-tune of other
conventional systems. As a consequence, there are many recent
studies in improving MapReduce performance.

MapReduce breaks down a job into map tasks and reduce
tasks. These tasks are parallelized across server clusters,’
yet reduce tasks must wait until all map tasks in the same
job finish. This is a parallel-sequential structure. In current
practice, multiple MapReduce jobs are scheduled simultane-
ously to efficiently utilize the computation resources in the
data center servers. It is a non-trivial task to find a good
schedule for multiple MapReduce jobs and tasks running on
different servers. There are a great number of studies on
general parallel processing scheduling in the past decades.
Nevertheless, whether these techniques can be applied directly
in the MapReduce framework is not clear; and especially, their
results on theoretical bounds are unlikely to be translated.

IThe server clusters here are meant to be general; it can either be data
center servers or cloud virtual machines.

978-1-4799-3360-0/14/$31.00 ©2014 IEEE

Vachine 1 | ML | M4 | RU | [w1 [w | R |

Machine 2 | M2 | | R2 | M2 |[Mm3]| R |

Machine 3 | M3 | ML | Rl \Time\ ML | RL e
0 00 200 (s) | 100 200)

(a) (b)
[] Task of job 1 [] Task of job 2

Fig. 1: Impact of server assignment. (a) Without server assignment, Hadoop
default strategy. (b) Joint considering of server assignment.

In this paper, we conduct research in this direction. There
are recent studies on MapReduce scheduling [3][4]. As an
example, an algorithm is developed in [4] for joint schedul-
ing of processing and shuffle phases and it achieves an 8-
approximation. All past studies assume that the servers are
assigned. That is, they assume that tasks in MapReduce jobs
are first assigned to the servers, and their scheduling is con-
ducted to manage the sequences of the map and reduce tasks in
each job. It is not clear the impact that if the server assignment
is “less good”, whether this will affect the scheduling on map
and reduce tasks. We illustrate this impact by a toy example
in Fig.1. There are three machines and two jobs. Job 1 has
4 map tasks and 2 reduce task. Job 2 has 1 map task and 1
reduce task. Assume the processing time to be 75 seconds for
all map tasks and 100 seconds for all reduce tasks. If server
assignment is not considered, we will result in Fig.1(a), which
follows the default FIFO strategy of Hadoop [5]. However, if
we joint consider server assignment, we can achieve a schedule
shown in Fig.1(b). It is easy to see that the completion time of
job 2 in Fig.1(a) is 250 seconds and in Fig.1(b) is 175 seconds,
a 30% improvement.

In this paper, we fill in this blank by jointly consider server
assignments and MapReduce jobs (and the associated tasks).
To systematically study this problem, we formulate a unique
MapReduce server-job organizer problem (MSJO). Note that
the MSJO we discuss is the general case where the jobs can
have different weights. We show that MSJO is NP-complete
and we develop a 3-approximation algorithm. This approxi-
mation algorithm, though polynomial, has certain complexity
in solving an LP-subroutine. Therefore, we further develop
a fast heuristic. We evaluate our algorithm through extensive
simulations. Our algorithm can outperforms the state-of-the-art
algorithms by 40% in terms of total weighted job completion
time. We further implement our algorithm in Hadoop and
evaluate our algorithm using experiments in Amazon EC2[6].
The experiment results confirm the advantage of our algorithm.

The remaining part of the paper is organized as follows.
We discuss related work in Section II. We formulate the MJSO
problem and analyze its complexity in Section III. In Section
IV, we present a set of algorithms. We evaluate our algorithms
in Section V. In Section VI, we show an implementation of
our scheme in Hadoop and our evaluation in Amazon EC2.
Finally, Section VII concludes the paper.

II. RELATED WORK

Due to the widely usage of MapReduce systems, there
is a flourish of studies on understanding MapReduce perfor-
mance and many developed various improvement schemes.
From system point of view, there are many valuable advances
on improving data-shuffling [7], in-network aggregation [8],
etc. From algorithmic point of view, people are looking into
MapReduce job/task scheduling with various considerations in
different scenarios. Quincy [9] and delay scheduling [10] are
proposed to provide fair scheduling for MapReduce systems.
Omega [11] is proposed to support cooperation of multi-
ple schedulers in large computer clusters. Zheng et al.[12]
propose a MapReduce scheduler with provable efficiency on
total flow time. Data locality is considered where Wang et
al. [13] investigate map task scheduling under heavy traffic and
Tan et al. [14] propose a stochastic optimization framework to
optimize scheduling of reduce tasks.

Two most closely related works of our paper are [3][4].
In [3], Chang et al. propose scheduling algorithms for fast
completion time. In [4], Chen et al. investigate precedence
constraints between map tasks and reduce tasks in MapRe-
duce job, and propose a 8-approximation algorithm. However,
they assume that tasks are assigned to processors/servers in
advance. As shown in Fig.1, scheduling of jobs without con-
sidering server assignment may result in less optimal solutions.
We fill in this gap in this paper.

General scheduling of parallel machines has decades of
study. There are many works with inspiring ideas and ana-
Iytical techniques [15][16]. For minimizing total weighted job
completion time with precedence constraints, the best known
work is a 4-approximation algorithm in [17]. However, these
works focus on the general case.

III. MAPREDUCE SERVER-JOB ORGANIZER: THE
PROBLEM AND COMPLEXITY ANALYSIS

A. Problem Formulation

Let J be a set of MapReduce jobs. Let M be a set of
identical machines. Let the release time of job j be 7;. This
release time is the time a job entering the system; note that
it differs from the job start time where the job scheduler can
schedule a job to be started later than this release time. Let
T and T be the set of map tasks and reduce tasks
for each job j. Let T be the set of all tasks of J. For each
task v € T, let p, be its processing time. We assume that
a task cannot be preempted. We also assume that for any
job j, processing times of its map tasks are smaller than that
of its reduce tasks. We admit that this is a key assumption
for our bounding development. Yet this is true in current
situation. Every map task simply scatters a chuck of data
while the reduce tasks need to gather, reorganize and process
data produced by map tasks. To make the situation worse, the

number of reduce task is always configured to be much less
than the number of map tasks. As a result, processing times
of reduce tasks are much longer than that of map tasks. We
also validate this assumption in our experiment.

Let dy, be the delay between a map task u € ’IF§M) and

a reduce task v € ’H‘ER) (e.g., introduced by shuffle phrase).
Let S, be the start time of task u. Let S be set of S, Vu € T.
Let C; be completion time of job j, which is the time when

all reduce tasks v € ’H‘ER) finish. Let C be set of C;,Vj € J.
There is a weight w; associated with job j and our objective
is to find a feasible schedule to minimize total weighted job
completion time Y ._;w;C; subject to following constraints

. . J€J
for every job j.

M)
Sy >r; Vu € T} (1)
M R
Sy > Sy + duy + Pu vue T veT!® (2
R
Cj = Sy +po vo € TV (3)
[Notation Definition [Notation Definition |
J Set of all jobs Cj Completion time of job j
T Set of all tasks in J w Weight of job j
|T| Task number in T T Release time of job j
M Set of machines ']I‘§M) Map task set of job j
M| Machine number in M T;R) Reduce task set of job j
S Set of start times of tasks Pu Processing time of task u
C Set of job completion dyv Delay between task w
time and task v
Su Start time of task u M, Middle finish time of
task u

B. Problem Complexity
Theorem 1: MSJO is NP-complete.

Proof: Tt is easy to verify that calculating total weighted
job completion time of a schedule result is NP. Therefore,
MSJO is in NP class. To shown MSJO is NP-complete, we
reduce a job schedule problem (problem SS13 in [18]) to it.
Problem SS13 is proven NP-complete. The proven theorem
can be stated as follow: Given a set J of jobs and a set M
of identical machines, every job j has a weight w;. Every
job j can be processed uninterruptedly on every machine with
processing time p;. Let C; be job completion time of job j in
a feasible schedule. It is NP-complete to determine a feasible

schedule where Zjej w;C; is minimized.

Given every instance (J,M) of problem SS13, we can
construct an instance (JM,MM) of MSJO. M and MM are
same. For every job j € J, there is a job j¥ € JM.
j and j have same job weight. 7™ has one map task with
processing time O and one reduce task with processing time
of job j. Release time of j™ is 0. Thus, if MSJO can be
solved optimally with a polynomial algorithm, problem SS13
can be solved by this algorithm. Because problem SS13 is

NP-complete, MSJO is NP-complete. []
IV. ALGORITHM DEVELOPMENT AND THEORETICAL
ANALYSIS

We outline our approach described in next three subsec-
tions: (1) We introduce a linear programming relaxation to
give a lower bound of the optimal solution for MSJO. This
LP-based solution may not be a feasible solution. (2) Although
there is a polynomial time algorithm for solving this LP relaxed
problem in theory, the high complexity associated makes it is

impractical to solve the LP-relaxed problem when problem size
is large. Therefore, inspired by this classic linear programming
relaxation, we develop a novel constraint generation algorithm
to produce another relaxed solution which provides lower
bound to MSJO. (3) We develop algorithm MarS to generate a
feasible solution from this relaxed solution. We prove that this
solution is within 3 factor of the optimal solution for MSJO.

A. Classical Linear Programming Relaxation

Since MSJO is NP-complete, we adopt a linear program-
ming relaxation of the problem to give a lower bound on the
optimal solution value. Constraints of this LP relaxation are
necessary conditions that task start times in a feasible schedule
result have to satisfy. The relaxation constraints are shown as
follow:

1 2
pu u Pu a pu VB S T (4)
S (20) 3%

Where |[M] is number of machines in M,B is any subset of T.

Then our linear programming relaxation problem is min-
imizing 3y w;C; subjected to constraints in Equation.1-4.
We call this problem Classical LP Relaxation Problem (CLS-
LPP). Note that the decision variables in this CLS-LPP are S,
and Cj; so a solution can be presented as (S, C).

Constraints in Equation.4 describe a polyhedron where task
start times of a feasible schedule lie in. We give a simple
example to explain the intuition. Consider 3 machines with 6
tasks t1,ts,...,ts whose processing times are pi,p2, ..., D
respectively. Consider an assignment result where ¢; and 5 are
assigned to machine 1, ¢3 and ¢4 to machine 2, {5 and t¢ to
machine 3. Start times of ¢; and ¢ can be S; = 0 and S; = p;.
Or Sy =pgand S =0 1f to is scheduled first. Then, we have

p1S1+ p2S2 = pip2 = 3((p1 +p2)® — (P} + p3)). Tasks on
other machines have smnlar equatlons Adding these equatlons

together we have Zl 1 pl;S'Z $(p1+p2)? + 5 (ps —|—p4) +
6

(p5+p6) _% = 1p7, = 1X%(Z1 1P 1) _221 lpz

where equality holds when p; + p2 = p3 +ps = p5s + ps =

5 ZZ 1 pi- Note that this argument can be extended to any
feasible task schedule results. When additional constraints are
added, the sum of task start times will increase. As a result,
the left part of Equation.4 increases and the relation still holds.

B. Conditional LP Relaxation and Constraint Generation Al-
gorithm

Note that there are an exponential number of constraints
in Equation.4 due to the exponential number of B. In theory,
CLS-LPP can be solved in polynomial time using ellipsoid
method with a separation oracle [16]. However, the complexity
associated with ellipsoid method makes it impractical to solve
large problems with thousands of decision variables. We derive
a new LP-relaxation problem which has a small subset of
constraints in Equation.4. The optimal result of this new LP-
relaxation problem also leads to the 3-approximation algorithm
to be developed in section IV-C. Because this new problem
is built by iteratively adding constraints based on checking
certain property of its solution, we call it Conditional LP-
relaxation problem (CND-LPP).

A
> ieg Wil

0 Hyperplane defined by
objective function

Fig. 2: Illustration of optimal solutions of CLS-LPP and CND-LPP. Fine
black lines represent constraints in Equation.4. Thick black lines represent
constraints in Equation.1-3. Blue lines represent boundary of PL. Red lines
represent boundary of PFC.

Before developing our algorithm for building CND-LPP,
we introduce a property of the solutions that satisfy Equation.4.
Given start time S, of task u, let M, = S, + %pu be middle
finish time of task u. The property is described as follows:

Property 1: Given S satisfying Equation.4, we sort tasks
in non-descending order of their middle finish times. We use a
permutation 7 to represent the sorting result, where M) <
My < -+ < My(r))- We have following inequation for all
iei2...|’ﬂ‘|]:

1 <=
™ Zpﬁ(k) < 2My) ®)]
k=1

Proof: For a given permutation m and task 7(i), we
create a task set B = {m(1),7(2),...,7(i — 1)}. We rewrite
Equation.4 as:

i1 2 i—1
Dr(k) 1 2
Zpﬂ(k) ((k) T) > |TVJI <pr(k)> —3 Zpﬂ(k)
k=1 k=1

(6)
Then we have

i—1 2
pr(k)Mw(k) TVJI <pr(k)>
k=1

<M,

Because M (1) < Mr2) <- x(s)> We have:

i—1 i—1 2
M) pr(k) > ZPW(Mray 2 2|M| <pr(k)>
k=1 k=1

Finally, we have Equation.5 by eliminating Z;C_:l Dr(ky- W

Given a solution of CLS-LPP, if we schedule tasks in non-
descending order of their middle finish time, Property 1 gives
us a basic relation between the total processing time of
previous scheduled tasks and the middle finish time of the
unscheduled tasks. We will use this property to prove the the-
oretical bound of our algorithm MarS. Note that this property
holds for any solution satisfying constraints in Equation.4. If
we can build a CND-LPP whose optimal solution also has this
property, MarS has the same theoretical bound based on this
CND-LPP.

Recall that the intuition behind Equation.4 is to describe a
polyhedron where the task start times of a feasible schedule lie
in. We denote this polyhedron as P. Given a specific CLS-
LPP, its constraints define a polyhedron, denoted as PC 5. All
precedence constraints in Equation.1-3 define another poly-
hedrion, denoted as PF¢. We know that PC¢LS = pL npFPC
(see Fig.2). Objective function of the problem defines a
hyperplane. Solving CLS-LPP is searching for a point in
PCLS which has the smallest distance to this hyperplane.
Instead of finding the optimal point in PCES (point A in
Fig.2), we search a solution in PFY (point B in Fig.2)
which has Property.1. We start with an initial CND-LPP which
only contains all precedence constraints in Equation.1-3. By
iteratively adding fine chosen constraints in Equation.4, we
approach the desirable solution.

To check whether an optimal solution satisfies Property.1,
we can check whether constraints in Equation.6 are satisfied by
this optimal solution for every task 7(i). We formally define
these constraints as follows:

Definition Performance Guarantee Constraint for given 7 and
index i, denoted as PGC(m, 1), is defined as follows:

1—1
Z Pr(k)
k=1

(Zk 1Pr(k)2

We call them performance guarantee constraints because if an
optimal LP satisfies PGC(m, i) for Vi € [2...|T|], MarS can
produce a feasible solution with guaranteed performance.

Sﬂ.(k) > R(m, i)

where R(m,i) = 3 Zk 1p7T(k)

We first describe the main process of our constraint gen-
eration algorithm (COGE) (see Algorithm.1). First we build
an initial CND-LPP. In this initial CND-LPP, all precedence
constraints in Equation.1-3 are included. Its objective function
is same to MSJO. Then, there are 3 main steps. In step 1,we
solve CND-LPP and get an optimal solution (S¥¥ CL¥) for
current CND-LPP. In step 2, we use S** to produce 7 and
build PGCs based on 7. In step 3, we check whether S*¥
satisfies PGC(,i) for Vi € [L...|T|]. If SE¥ satisfies all
PGCs, we are done. Otherwise, we add the violated PGCs to
CND-LPP and repeat step 1 to 3 until we produce an optimal
solution satisfies all PGCs.

Because finding an optimal solution satisfying all PGC-
s may still involve large computation complexity in large
problems, given a threshold € we can terminate computation
if current solution (SE¥,CLEP) is within (1 — €) of optimal
solution satisfying all PGCs. Unfortunately, optimal solution
is hard to compute. Instead, we construct a feasible solu-
tion (SNV CNV) which satisfies all PGCs (NV means no-
violation). When PGC(m,1) is not satisfied, we calculate a
offset which idicates how much S ;) should increase to satis-
fy PGC(r,i). Function ViolationOf fset(PGC(x,1), SEY)
calculate this offset as follows:

i—1
1
R(m, 1) — Pr k)Sﬁi
Pr(i—1) < ; ((k)

Thus, we can build a feasible solution by adding this offset to
S N(}C/) for k € [i—1...|T|]. Finally, after all PGCs are checked,

T

offset =

we check whether (SY¥, CLP) reaches the stop threshold.

In practice, COGE can produce satisfactory result in less
than 10 iterations.

Algorithm 1 COGE()

Input: 1) Job set J; 2) Machine set M; 3) Stop threshold e
Output: A solution (SLP cLtPy.

1: Build initial CND-LPP with Equation.1-3;

2: repeat

3: Solve CND-LPP with a linear programming solver;

4: Let (SYF,C*P) be optimal solution of current CND-LPP;
5: Let violated PGC number vn be 0;

6: (SNV,(CNV) P (SLP,CLP);

7: 7 + Sort tasks by middle finish time according to S*7;
8: for alli e [1...|T|] do

9: if PGC(r,14) is satisfied by S“¥ then

10: continue;

11: Add PGC(w,1) to CND-LPP;

12: wmn =ovn + 1;

13: of fset = ViolationOf fset(PGC(m,i),S*T)

14: forall ke [i —1...T] do

15: S,J,V(Z) = STIFV(Z) + of fset;

16: Update CVV according to S™VV;

17: it w;CP > (1—¢) ZJEJ w;CNY then

18: return (SF CEP);

19: until vn is 0
20: return (S¥F CEP);

Algorithm 2 MarS()

Input: 1) Job set J; 2) Machine set M; 3) LP optimal result
SL
Output: Scheduling result S7.

1: S7 ¢

2: 7 « Sort tasks by middle finish time according to SY¥;

3: Let e, be earliest idle time of machines m;

4: em 0, Vm € M;

5: for all i € [1...|T|] do

6: Find job j where (i) € ']I‘(M) or 7(i) € ']I‘(R)

7: if 7(i) € 'JI‘(M) then

8- Sea'rlzst _ 7']

9: if w(i) € T} then

10: Geartist — maXuETE_M%SgEsH{SuH + pu + duriy }5
11: Find m™ where epm+ = mingem{em };

12: SH _ max{searlL.st Cm };

13: Em*x = Sﬂ'(l) +p7‘-()
. H H
15: return S7;

C. MarS Algorithm

In this section, we describe MarS. MarS is an heuristic
algorithm which derives feasible schedule result from the opti-
mal solution of the linear relaxation problem. Let (SZ¥, CEF)
denote the optimal result of our LP relaxation problem. Let
MEP denote the middle finish time of task u in the LP optimal
result. We have MELEP = SLP 4 /2, Vu € T. Let S¥ be set
of task start times in final schedule result.

Our algorithm MarS is shown in Algorithm.2. We first
produce 7 based on SLF. Then we schedule tasks from (1)

to 7(|T|), meaning we schedule tasks in non-descending order
of their middle finish time. In each iteration 7, we first check
the earliest possible start time S¢"'ist of task 7 (i) to make
sure that precedence constraints are satisfied. Then we choose
a machine m* which has the earliest idle time among all
machines. We schedule 7(i) to machine m* with start time
min{Seerliest ¢ .} and update e,,- as finish time of 7 (7).

Because MarS schedules tasks in non-descending order of
their middle finish times, Property 1 gives us a basic relation
between the total processing time of previous scheduled tasks
and middle finish time of unscheduled tasks. When release
time constraints and precedence constraints exist, there may be
idle time intervals between tasks. Thus, we introduce Lemma 2
to give an upper bound to the total length of these intervals.

Lemma 2: Given schedule result after tasks w(k), k €
[1...(¢ — 1)], are scheduled by MarS, if we choose any
machine m and start 7(4) as soon as possible after machine m
is idle, it result a start time Sf(i) for m(7). Let g(m, (i) be
total length of idle time interval on machine m before Sﬁ iy
We have:

g(m,m(i)) < Mf(f) @)

Proof: . We outline our idea first. In our schedule result,
there is an idle time interval before a task because this task
cannot start earlier due to certain precedence constraints. These
constraints are tight in our schedule result but may not be
tight in LP optimal result. For example, there is an idle time
interval between task ug and vs in Fig.3 because 552 = Sﬂ +
dyquy + Pu,. Otherwise, task uy can start earlier. However,
we only know Sﬁzp > Sﬁlp + duyuy + Pu,- Our idea is to
prove S& — (S + p,,) < MEP — MEP by analyzing these
tight precedence constraints in our schedule result. The left
part of this inequation is maximum length of idle time interval
between vs and ug. We iteratively develop similar inequations
for idle time intervals before task v3. Sum up both side of
these inequations, we have Equation.7.

Next, we start our formal proof. For a scheduling problem,
we can build a precedence graph G = (V, L) to describe all
precedence constraints with delay. V is the set of tasks. For
two task u and v, directed link (u,v) € L with length dy,
indicates that execution of v at least waits for a time interval
dy, after u finishes. For our problem, we introduce a dummy
initial task ¢! to represent the start point of the schedule.
Then, constraints S, > r;,Vu € 'IF;-M in Equation.1 can be
expressed in the form of precedence constraint with delay:
Su > Syt + dyry + pyr,Yu € TS where Sy = 0,dyr,, =
75, pgr = 0. In remaining part of this proof, we only mention
precedence constraint with delay.

Given a schedule result, delay between u and v may be
longer than d,,. We say a link (u,v) € L is tight in this
schedule result if Sf = Sf + dyy + pu. In a schedule result,
there may be a right-link path {u; — ug — - -+ — us} where
link (ug, ugp+1) € Listightforallk € [1...s—1],s > 2. Fig.3
demonstrates a three-node tight-link path in a schedule result.
If us = u, we call {uy — us — --- = ug} a tight-link path of
task u. Among all tight-link paths of task u, there is a tight-link
path which has the maximal number of nodes. We call it the
longest tight-link path of task u, denoted as LT LP(u). In our

problem, for a map task u € TJ-(M), LT LP(u) can be empty or

eDupst Quyuy e—Duy—

U3 U2

fpvl”; dvl Vo 'ﬁqu*’ dUQ’Ug ‘ pvg"’g

Machine 1 V1 — U2

Machine 2

i | | >
H H H Time
SUS Su1 Su2 lime

Fig. 3: Demo of tight-link path v; — v2 — v3 and w1 — w2 in a schedule
result for proof of Lemma 2.

LTLP1 = {t! — u}. For a reduce task v € TJ-(R), LTLP(v)
can be LTLP2 = {t! — u — v} or LTLP3 = {u — v}
where u € T\

S

For a tight link (u,v), the following inequation holds for
the optimal result of LP relaxation problem because prece-
dence constraints are satisfied:

SEP > SLP 4 dy + pu
Then we have:

1
qu/PZMfP"’duv +pu+§(pv_pu)

For a tight-link path {u; — us — -+ — us}, we have:

s—1
1
quSP Z MuLlP + Z(dukuk+l + puk) + 5 (pus - pul)
k=1
For LTLP1, LTLP2 and LT LP3, we always have p,, >
pu, because in a specific job, processing times of its reduce
tasks are longer than that of its map tasks. Then we have:

s—1

Mifsp Z Miflp + Z(dukuk+1 + puk) (8)
k=1

Because all links in a tight link path are tight, we also have:

s—1

SH =S = (duurir + Pu))
k=1

Based on Equation.8 and Equation.9, we analyze lengths
of idle time intervals on machine m. After scheduling 7 (%)
to machine h, there are idle time intervals before Sﬁi).
Considering a task @ right after a idle time interval, we find
LTLP(4) = {u1 — us — -+ — us}. Because u; is the
first task in LT LP(us), there must be a task ¢ scheduled
on machine m where S; > S,, > (S; + ps) (see task vg
in Fig.3) and M2" > M[P. Otherwise, u; can start earlier.
With Equation.8 and Equation.9, we have:

Su, — (So +ps) < Mip - MEFP

The left side of this inequation is the maximum length of
idle time interval between @ and 0. We repeat developing this
inequation for idle time interval before ¢. Finally, we end up
with ¢/ whose middle finish time is 0. By adding all these
inequations together, we have Equation.7. []

Lemma 2 gives an upper bound for total idle time intervals in
the scheduling of task 7(¢). Note that, this result only holds

when tasks from 7(1) to 7(¢ — 1) are scheduled according to
MarS. Next, we introduce Theorem 3.

Theorem 3: MarS is a 3-approximation algorithm for M-
SJO.

Proof: Consider (i) is scheduled to machine m. Let
U(m, w(z)) be set of tasks scheduled to machine m before
m(i). Combine Equation.5 and Equation.7, we have:

1—1

! > bt + gl ni) < 3ME

[M] &

7(i) as

In our algorithm, we choose machine to start task
early as possible, so we have:

Sen <D

w€U(m,m(4))

Pu+g(m,m(i)),Ym € M

There must exist a machine m where ZuGU(m,ﬂ'(i))p’U« <
|M\ Zk 1Pr(k)- Then, S) < 3MLE (1) and we have:

3
Sf(i) + Pr(iy < 3MES () T 5P = 3(55(1;) +Pr@y) (10)

Equation.10 holds for all task 7 (i), ¢ € [1...|T|], then OJH <

3CJ-LP,Vj € J. Finally, we have:

ijch < 3Zw70JLP

Jjel Jjel

Because) jer Wi CJ-LP is a lower bound of the optimal, MarS
is a 3-approximation algorithm for MSJO.]

V. SIMULATION
A. Simulation Setup

1) Background: We use synthetic workloads to study the
performance of our algorithm, following similar simulation set-
up in [3][4]. We generate jobs as follows: (1) Job release times
are randomly generated following Bernoulli with probability %
(2) Number of tasks in a job are generated (a) uniformly or
(b) randomly. For a job with uniformly generated tasks, the
number of map tasks is set to 30 and the number of reduce
tasks is set to 10. For a job with randomly generated tasks,
the number of map tasks follow Poisson distribution with a
mean of 30 and the number of reduce tasks is uniformly
chosen between 1 and the number of map tasks. (3) Task
processing times are generated (a) uniformly or (b) randomly.
For the tasks with uniform processing time, processing times
of map tasks are 10 and processing times of reduce tasks are
15. For the tasks with random processing time, processing
times of map tasks are normally distributed with a mean
of 10 and a standard deviation of 5. Processing times of
reduce tasks are normally distributed with a mean 15 and
a standard deviation 5. (4) Weights of jobs are generated
randomly in normal distribution with a mean 30 and standard
deviation 10. (5) Delays between map tasks and reduce tasks
are proportional to the processing time of map tasks. This
indicates that a long map task will generate more data and
these data will need longer time to be transmitted to the reduce
tasks. The default number of machines is set to 50.

2 50,
—+MarS| +MarS
o 40
T15 ‘——*—// @
< a0
5 ©
=] o 20
= 1 =
= 10
0.1 02 03 04 05 001 02 03 04 05
Stop Threshold Stop Threshold

Fig. 4: Stop threshold vs TWIJCT Fig. 5: Stop threshold vs iteration
ratio. number.

2) Evaluation metric: The key to compare different algo-
rithms is total weighted job completion time (TWJCT) of the
result of the algorithms. To make comparison under different
configurations more illustrative, we would like to compare
TWICT of different algorithms with the optimal solution.
However, computing the optimal solutions require exponential
time. Therefore, we use the LP lower bound as a substitute.
We define TWJCT ratio as our evaluation metrics:

TWICT of Algorithm X result

LP lower bound
TWICT ratio indicates how close the schedule result to the
theoretical lower bound. The smaller TWIJCT ratio is, the

better the schedule result is. All results in our simulation are
measured by TWJCT ratio.

TWICT ratio =

3) Comparisons strategies: We compare performance of
our algorithms with the following scheduling strategies:

H-MARES: H-MARES [4] is a LP-based heuristic algo-
rithm considering precedence constraints in MapReduce jobs.
In evaluation of [4], H-MARES outperforms other algorithms
with a factor of 1.5 to the lower bound. In H-MARES, it
is assumed that tasks are assigned to machines in advance.
We use H-MARES to evaluate effect of release time and
precedence constraints. To offer a fair comparison, we adopt
a workload-based assignment strategy where tasks are evenly
allocated in order to balance total processing time of tasks on
every processor. According to [16], when there is not release
time and precedence constraints, LP relaxation constraints in
Equation.4 and constraints in [4] have same lower bound if
workloads on every processor are same. Moreover, workload-
based assignment strategy is also widely adopted in practice.

High Unit Weight First (HUWF): Unit weight (UW)
of a job is calculated by dividing weight of the job by total
processing time of tasks in the job. All Tasks are sorted in
descending order of unit weights of the jobs they belong to.
We also maintain a available task list where all tasks in the list
do not have any unscheduled precedent task. In each iteration,
we choose the task with highest unit weight and assign it to a
machine where it can start as early as possible. Then we check
whether there is any unscheduled task whose precedent tasks
are all scheduled and put these tasks into available task list.
We iterate until all tasks are scheduled.

High Job Weight First (HJWF): This algorithm works
similar to HUWF. The difference is that tasks are sorted
according to weight of the jobs they belong to.

In MarS, we need to choose a stop threshold € for COGE.
We run MarS with 100 jobs and change value of stop thresh-
olds (see Fig.4 and Fig.5). We see that when e changes from
0.1 to 0.5, there is a small performance degradation for MarS

w

w

25

TWJCT Ratio
TWJCT Ratio

25

B T EE . DTS TEET SRS

TWJCT Ratio

-+ -+ -+

=+=MarS -©-HUWF
-X-H-MARES -O-HJWF

=+=MarS -©-HUWF
-X-H-MARES -O-HJWF

—— =
FMarS ©-HUWF

-%-H-MARES -©-HJWF

0.57

10 20 30 40 70 80 90 100 10 20 30 40

50 60
Job Number
Fig. 6: Performance comparison for most ran-
domized scenario. All job parameters are in
random categories. Machine number is 50.

50

Job Number

Fig. 7: Performance comparison for uniform task
number scenario. Other job parameters are in
random categories. Machine number is 50.

60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Job Number

Fig. 8: Performance comparison for uniform task
processing time scenario. Other job parameters
are in random categories. Machine number is 50.

25 S 2.
Il VarS
[IH-MARES
21 CZJHUWF
2 |HWE |
2 2 218
£ = = 1.
o E <
—y = 16
(&
%’ 215 H i —t—t g
= = o =4
[= = =
b 1
—=MarS -HUWF ==MarS §-HUWF 12
x-H_MARES -O-HJWF o5 «%-H-MARES -O-HJWF
. 1

0.5

10 20 30 40 70 80 90 100

50 60
Job Number

Fig. 9: Performance comparison for most ran-
domized scenario. All job parameters are in

random categories. Machine number is 100. number is 50.

while iteration number decreases rapidly. Thus, we choose
e = 0.3. H-MARES also need a stop threshold in solving its
LP-relaxation problem. To offer a fair comparison, we choose
€ = 0.3 for H-MARES instead of 0.5 in the original paper [4].

In our simulation, we assume that the task processing time
and delays between a map task and a reduce task are known to
the scheduler. There are many studies on accurate processing
time prediction [19][20] and trace study [21] shows that the
majority of map tasks and reduce tasks are highly recurrent
making prediction feasible. We plan a future work here.

B. Simulation Result

We first discuss the most randomized scenario where all
parameters are generated in randomly. Based on this scenario,
we evaluate impacts of different job parameters.

Performances in the most randomized scenario. Fig.6
shows results where all job parameters are in random category.
We see MarS constantly offers efficient solutions when job
number changes. In theory, we proved that MarS represents
a 3-approximation of the theoretical lower bound, meaning
that TWICT ratios of MarS are at most 3. In practice, MarS
represents an increase less than 0.4 in terms of TWJCT ratio,
compared with theoretical lower bound. More specifically,
starting at 1.32, MarS increases to 1.39 when job number is 20
and stays at about 1.38 with a variance less than 0.02 when job
number further grows. This is because LP relaxation always
produces an optimized task schedule order. H-MARES shows
stable performance after job number reaches 20. However, we
see a constant performance difference between H-MARES and
MarS. We consider it as improvement by joint scheduling.

10 20 30 40 50 60 70 80 90 100
Prediction Error (%)

Fig. 10: Impact of prediction error for most ran-
domized scenario. Job number is 100. Machine

Job Set 1

Job Set 2

Fig. 11: Experiment results for different job set
sizes.

We see that MarS outperforms other algorithms by over
40% in most cases. The only exception happens when job
number is 10 where MarS is 1.32 while H-MARES is 1.58,
HUWF is 1.77 and HIWF is 1.86. After job number rises
to 20, H-MARES increases to 1.96, HUWF and HIWF jump
to 2.17 and 2.25 respectively. This is because when there is
less jobs, machines are not extensive loaded. Thus, different
schedule algorithms can gain close performances. However,
when job number increases and machines are fully utilized,
algorithm results differ from each other. We also notice that
H-MARES outperforms HUWF and HIWF in all cases. This
is because workload-based allocation performs well and H-
MARES benefits from optimized task order generated by LP
relaxation conditions.

Impact of task number in job. Next, we examine the
effect of task number in a job. We generate jobs with uniform
task number category while other job parameters are in random
category. The results are shown in Fig.7. Compared with result-
s in Fig. 6, we see that all algorithms gain better performance.
MarS stays at about 1.15 which is 0.17 lower in terms of
TWIJCT ratio. H-MARES gradually increase from 1.48 to 1.88.
HUWF and HJWF still have larger performance variance but
TWICT ratio of both algorithms decreases by 0.2 on average.
It is also shown that there is only a tiny performance difference
between HUWF and HIWE.

Impact of task processing time. We generate jobs with
uniform task processing time category while other job pa-
rameters are in random category. MarS is very close to the
theoretical lower bound. Its maximum distance to the lower
bound is 0.08 when job number is 10. When job number rises,
this distance decreases to less than 0.02. The gap between
MarS and H-MARES is reduced to 0.35 on average.

It is worth noticing that comparing results in Fig.7 and
Fig.8, all algorithms gain better performance in uniform task
processing time category. This result indicates that it is more
effective to have uniform task processing time than to have
same task number in all jobs. It also shows the importance
of solving skewed task processing time problem in a parallel
computing framework.

Impact of machine number. We change machine number
to 100 and examine all algorithms in most randomized scenario
(see Fig.9). We see that MarS performs extremely well. Start-
ing at 1.09 when job number is 10, its TWJCT ratio gradually
decline to 1.01 which can be considered as optimal. Other
algorithms also gain better performance than same scenario
when machine number is 50 (see Fig.6). Different from MarS,
TWICT ratios of other algorithms increase with job number.
When job number reaches 100, MarS outperform H-MARES,
HUWF and HJWF by 0.42, 0.75 and 0.79 respectively.

Impact of prediction error In order to investigate impact
of prediction error, we inject errors to precessing times of
tasks. All algorithms schedule jobs with error-injected in-
formation while we calculate a LP-lower bound based on
no-error information. The result is shown in Fig.10. x-axis
is maximum prediction error to no-error precessing time.
We see that all algorithms do not show great performance
degradation. TWIJCT ratios of four algorithms increase slightly.
The maximum performance degradation is found in H-MARES
but it is less than 0.35 in term of TWIJCT ratio when maximum
prediction error is 100%.

VI. IMPLEMENTATION AND RESULTS OF EXPERIMENT
A. Implementation

We implement a MSJO framework in Hadoop-1.2.0 and
run the implementation on Amazon EC2. The implementation
framework is described in Fig.12. To run in Hadoop, MSJO
needs to cooperate with two components of Hadoop: JobTrack-
er and TaskTracker. JobTracker manages all jobs in a Hadoop
cluster and, as jobs are split into tasks, TaskTracker is used to
manage tasks on every machine.

We register MSJO to JobTracker so that JobTracker can
call MSJO to make schedule decisions. MSJO makes sched-
ule decisions according to different algorithm module. Cur-
rently, we implemented four algorithm modules for MarS,
H-MARES, HUWF and HJWF in our experiments. Other
algorithm modules can be added, and we open source our
implementation at [22]. When a job is submitted to Hadoop,
JobTracker notifies MSJO that a job is added. MSJO puts
the job into a queue. MSJO scheduler is event driven from
JobTracker. When Hadoop is running, JobTracker keeps noti-
fying MSJO on TaskTracker status. If a machine is idle, MSJO
assigns a task to the TaskTracker of this machine. After a
task is finished, the TaskTracker will tell JobTracker, which
will further notify MSJO and MSJO updates job information.
Accordingly, if all tasks in a job finish, MSJO removes the
job and JobTracker sends a job-completion event to user
application.

Here we also have a Processing Time Predictor module.
This module can be based on a prediction algorithm or history
recording of the completion time of past jobs. We leave such

MSJO
— | MarS || H-MARES |[HUWF || HIWF]
Processing Time
Predictor ‘ MSIJO Scheduler
A Fy
(3) Event: (2) Assign
(1) Submit Task is done "task
job
Jo Y, C
Job Set “ / I Task
4) Event:
Generator go{) i:zl[(lme JobTracker TaskTracker
Hadoop

Fig. 12: Processing of a job in MarS implement with Hadoop.

a prediction module to our future work. In this experiment,
we run jobs one by one with default scheduler of Hadoop and
collect data to train our predictor.

In current implementation, all algorithms are offline algo-
rithms. They need full information about the job set before
scheduling. To fulfill this requirement, we develop a job set
generator. In each experiment, job set generator submits a set
of jobs to Hadoop at the beginning of the experiment. These
jobs carry release time and weight information with them.
After MSJO collects all information for the job set, MSJO
call an algorithm module to make a schedule. After that, MSJO
schedules jobs accordingly.

B. Experiment Setup

We evaluate the algorithms with experiments on a 16-node
cluster. This cluster is built on Amazon EC2. We choose virtual
machines of type m1.small which have a 1-ECU cpu (1 ECU
roughly equals to 1.0 GHz), 1.7 GB memory and 160GB
disk. According to our measurement, the inter-node network
bandwidth is 400Mbps.

We employ Wordcount as the MapReduce program in our
experiments. Wordcount aims to count the frequency of words
appearing in a data set. It is a benchmark MapReduce job
and serves as a basic component of many Internet applications
(e.g. document clustering, searching, etc). In addition, many
MapReduce jobs have aggregation statistics closer to Word-
count [8]. We use a document package from Wikipedia as input
data of jobs. This package contains all English documents in
Wikipedia since 30" January 2010 with uncompressed size
of 43.7 GB. In this package, there are 27 individual files, of
which the sizes range from 149 MB to 9.98 GB. For every file,
we create a MapReduce job to process it. The number of map
tasks is determined by input data size. One map task is created
for 64 MB input data. We set the number of reduce tasks to
half of the number of map tasks. The release time and job
weights are generated in the same way as in the simulation.

We build two job sets: (1) Job set 1. It contains 10 jobs
where input data size of every job is less than 1GB. We use
this job set to evaluate the performance of our algorithms when
jobs are small. (2) Job set 2. This job set contains all 27 jobs.

C. Experiment Result

Performance of different algorithms The result is shown
in Fig.11. In job set 1, we see that MarS outperforms the

1 ‘J—’
0.8¢
0.6
1N
@)
O
0.4
0.2F i
— Map tasks
— Reduce tasks

0 200 400 600 800 1000
Task Processing Time (second)

Fig. 13: Comparison of task processing time in experi-
ment.

other algorithms. MarS increases 0.416 to the lower bound
while H-MARES, HUWF and HJWF increase 0.539, 0.81
and 0.672 respectively. In job set 2, we see that MarS still
outperforms rest algorithms. Compared with results in job set
1, we see TWIJCT ratios of all algorithms increase. The trend
is also reflected in simulation results. We notice that HIWF
suffers more performance degradation than other algorithms.
The reason may be that in job set 2, these jobs process data as
large as 9.98 GB. They are some relatively big to jobs in job set
1. HYWF scheduled big jobs first because their weights are big.
However, these jobs have big weights but their unit weights
are small because they take a long time to process these data.
As a result, small jobs with big unit weights are delayed. By
considering the relation between weight and processing time,
MarS, H-MARES and HUWF do not suffer from this mixture
of different size jobs.

Processing times of map tasks and reduce tasks We show
precessing times of map tasks and reduce tasks. Training data
and MarS results are shown in Fig.13. Both of them have 950
tasks. In training data, there is a clear processing time differ-
ence between reduce tasks and map tasks. Processing times of
map tasks stays around 80 seconds while most of reduce task
are over 150 seconds. We also see that there are gaps between
training data and MarS result. The main reason is that training
data is produced by running jobs in turn and the cluster is
not fully utilized. Meanwhile, MarS schedules multiple jobs
simultaneously to fully utilize the cluster. Intensive utilization
of the cluster introduce cost from competitions on resources
such as disk I/0O, network bandwidth, etc.

VII. CONCLUSION

In this paper, we studied MapReduce job scheduling with
consideration of server assignment. We showed that with-
out such joint consideration, there can be great performance
loss. We formulated a MapReduce server-job organizer prob-
lem. This problem is NP-complete and we developed a 3-
approximation algorithm MarS. We evaluated our algorithm
through extensive simulation. The results show that MarS
can outperform state-of-the-art strategies by as much as 40%
in terms of total weighted job completion time. We also
implement a prototype of MarS in Hadoop and test it with
experiment on Amazon EC2. The experiment results confirm
the advantage of our algorithm.

ACKNOWLEDGEMENT

Dan Wang’s work is supported by National Natural Science Foun-
dation of China (No. 61272464), RGC/GRF PolyU 5264/13E, HK
PolyU 1-ZVC2, G-UB72. Jiangchuan Liu’s work is supported by a
Canada NSERC Discovery Grant, an NSERC Strategic Project Grant,
and a China NSFC Major Program of International Cooperation Grant
(61120106008).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008.

[2] D. DeWitt and M. Stonebraker, “Mapreduce: A major step backward-
s,” 2008. http://www.databasecolumn.com/2008/01/mapreduce-a-major-
step-back.html.

[3] H. Chang, M. Kodialam, R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukherjee, “Scheduling in mapreduce-like systems for fast
completion time,” in Proc. IEEE INFOCOM, 2011.

[4] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of pro-
cessing and shuffle phases in mapreduce systems,” in Proc. IEEE
INFOCOM, 2012.

[5] “Apache hadoop,” 2013. http://hadoop.apache.org/.
[6] “Amazon ec2,” 2013. http://aws.amazon.com/cn/ec2/.

[71 J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li,
W. Lin, J. Zhou, and L. Zhou, “Optimizing data shuffling in data-parallel
computation by understanding user-defined functions,” in Proc. USENIX
NSDI, 2012.

[8] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
exploiting in-network aggregation for big data applications,” in Proc.
USENIX NSDI, 2012.

[9] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proc. ACM SOSP, 2009.

[10] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. ACM EuroSys, 2010.

[11] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proc. ACM EuroSys, 2013.

[12] Y. Zheng, N. B. Shroff, and P. Sinha, “A new analytical technique
for designing provably efficient mapreduce schedulers,” in Proc. IEEE
INFOCOM, 2013.

[13] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang., “Map task scheduling
in mapreduce with data locality: Throughput and heavy-traffic optimal-
ity,” in Proc. IEEE INFOCOM, 2013.

[14] J. Tan, S. Meng, X. Meng, and L. Zhang., “Improving reducetask data
locality for sequential mapreduce jobs,” in Proc. IEEE INFOCOM,
2013.

[15] B. W. Lampson, “A scheduling philosophy for multiprocessing system-
s,” Commun. ACM, vol. 11, pp. 347-360, May 1968.

[16] A. S. Schulz et al., Polytopes and scheduling. PhD thesis, Technical
University of Berlin, 1996.

[17] M. Queyranne and A. S. Schulz, “Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems,”
SIAM Journal on Computing, vol. 35, no. 5, pp. 1241-1253, 2006.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[19] A. Verma, L. Cherkasova, and R. Campbell, “Aria: automatic resource
inference and allocation for mapreduce environments,” in Proc. ACM
ICAC, 2011.

[20] Y. Yuan, H. Wang, D. Wang, and J. Liu, “On interference-aware
provisioning for cloud-based big data processing,” in Proc. IEEE/ACM
IWQoS, 2013.

[21] E. Bortnikov, A. Frank, E. Hillel, and S. Rao, “Predicting execution
bottlenecks in map-reduce clusters,” in Proc. USENIX HotCloud, 2012.

[22] Y. Yuan, D. Wang, and J. Liu, “Joint scheduling of mapreduce jobs with
servers: Performance bounds and experiments (msjo package),” 2014.
http://www4.comp.polyu.edu.hk/~csyiyuan/projects/MarS/MarS.html.

