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Abstract—Accurate localization in wireless sensor networks is the foundation for many applications, such as geographic routing and
position-aware data processing. In this paper, we develop a new localization protocol based on approximate convex decomposition
(ACDL), with reliance on network connectivity information only. ACDL can calculate the node virtual locations for a large-scale sensor
network with a complex shape. We first examine one representative localization algorithm and study the influential factors on the
localization accuracy, including the sharpness of the angle at the concave point and the depth of the concave valley. We show that
after decomposition, the depth of the concave valley becomes irrelevant. We thus define the concavity according to the angle at a
concave point, which reflects the localization error. We then propose ACDL protocol for network localization. It consists of four main
steps. First, convex and concave nodes are recognized and network boundaries are segmented. As the sensor network is discrete, we
show that it is acceptable to approximately identify the concave nodes to control the localization error. Second, an approximate convex
decomposition is conducted. Our convex decomposition requires only local information and we show that it has low message overhead.
Third, for each convex subsection of the network, an improved MDS algorithm is proposed to compute a relative location map. Fourth,
a fast and low complexity merging algorithm is developed to construct the global location map. Besides, by slight modification on the
third step, we propose a variant of ACDL, denoted by ACDL-Tri, which is fully distributed and scalable while the localization accuracy is
still comparable. We finally show the efficiency of ACDL by extensive simulations.

Index Terms—Localization, approximate convex decomposition, wireless sensor networks
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1 INTRODUCTION

Location-based service in wireless sensor networks is
a key technology for many applications; and localiza-
tion has attracted academic interest for a long time.
The most straightforward method is to use the global
positioning system (GPS). Nevertheless, having each
node GPS-equipped is extremely expensive for wireless
sensor networks. Many algorithms have been proposed
to estimate the sensor locations using local information
only; a survey on location, localization and localizability
can be found in [20].

Recently there has been growing interest in local-
ization protocols that use the connectivity information
only. This aims to produce a relative coordinate sys-
tem for a network without reliance on extra hardware
supplements. These schemes can accurately recover the
original network topology, up to scaling and rotation.
Among the many studies, Multi-Dimensional Scaling
(MDS) based localization techniques have been proved
to compute locations of high accuracy and request low
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node density. A state-of-the-art MDS based algorithm,
MDS-MAP [24], [25], takes an inter-node hop distance
matrix as input, and generates a set of relative coordi-
nates for each node. Nevertheless, the accuracy of MDS-
MAP heavily depends on the assumption that the hop-
count distance between two nodes correlates well with
their Euclidean distance. Such assumption is valid only
when the network is in a convex field. In real world,
however, this is hardly true. In anisotropic networks with
concave regions, the shortest path may be significantly
bent [14]. As a result, the hop-count distance between
nodes would deviate from the Euclidean distance.

To avoid using hop-count distance between far-away
nodes (or to avoid mistakenly using the deviated short-
est path), some studies [3], [11], [12], [31] first locate
landmark network. The landmark network is composed
of nodes that are uniformly sampled from the original
network and the density of the landmark network is
usually set by a system parameter. In [11], [12], [31],
a triangular mesh structure (the landmark network) is
constructed. Each non-landmark node then trilaterates
its own location according to the distances to its closest
three landmarks. MDS-MAP(P) [23], an improved MDS-
based localization scheme, proposed to build relative
coordinate system for each node, and then merge these
relative coordinate systems to form a global coordinate
system. Unfortunately, its performance relies heavily on
the properly chosen core map, and the refinement used
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Fig. 1: Localization of an L-shape network with 851 nodes, avg. deg. 11.29. (a) Original map; (b) MDS-MAP; (c) ACD; (d) ACDL.

(a) (b) (c) (d)

Fig. 2: A sharper L-shape network has 1191 nodes with avg. deg. 12.47. (a) Original map; (b) MDS-MAP; (c) ACD; (d) ACDL.

in MDS-MAP(P) for a better result is time-consuming
which is not feasible for large-scale sensor networks.
Respecting the fact that in anisotropic sensor network-
s with holes, the hop count distance between nodes
may do not correlate well with the Euclidean distance,
Li [14] proposed REP, a rendered path protocol which
can estimate the pairwise distance between nodes by
rendering the shortest path and constructing the virtual
holes, and thus deliver a localization result with high
accuracy. However, the performance of REP relies on the
position of beacon nodes, and it is a nontrivial task to
construct a proper virtual hole in discrete sensor net-
works. CATL [27] is a recent state-of-the-art localization
algorithm. The key idea of CATL is to identify notch
nodes where the hop-count of the shortest path between
nodes deviates the true Euclidean distance. CATL then
uses an iterative notch-avoiding multilateration scheme
to localize the network. The performance of CATL heav-
ily depends on proper deployment of beacon nodes. In
addition, due to the iterative procedure, CATL suffers
from error propagation.

In this paper we develop a new localization protocol
based on approximate convex decomposition (ACDL).
ACDL decomposes the network into several convex
subsections. In each subsection, the hop-count distance
between nodes can provide a good approximation of the
Euclidean distance. ACDL finally unifies the locations of
all subsections. ACDL works well not only for arbitrary
network shape but also for low density networks since
it does not rely on the quality of the extracted triangular
mesh like [11], [12], [31]. It avoids localization error prop-
agation introduced by iterative procedure like [27]. More
importantly, ACDL is not exclusive. It can easily incor-
porate the state-of-the-art localization algorithms such
as [11], [12], [27], [31]. For instance, for the case when
individual nodes are extremely resource-constrained and
not capable of performing the improved MDS which we

use in each convex subsection to compute the relative
location map, CATL [27] or a trilateration scheme can be
applied where a node use distance measurements to at
least three reference points within its convex subsection.

Convex decomposition, with or without Steiner point,
has attracted interests from computer graphics com-
munity for a long time [1], [4], [7], [15]. For instance,
Chazelle et al. [4] proposed to decompose a non-convex
polygon into minimal number of convex sub-polygons
by introducing so-called X-patterns, where an Xk-
pattern, composed of k segments with one common end
point, is a particular interconnection of k notch (or reflex)
vertices to remove the k notches without incurring any
new notches; Lien et al. [15] have studied the problem
of approximate convex decomposition of a polygon. It
first computes concavity of each vertex based on so-
called bridge and pocket for vertices on external and hole
boundaries separately; it then cursively resolves concave
points in order of decreasing significance until each point
has a concavity larger than the given threshold, and
eventually, the polygon is decomposed into approxi-
mate convex pieces. However, these algorithms often
require coordinate information and work in a centralized
fashion, which is not applicable for large-scale sensor
networks.

As such, for approximate convex decomposition based
localization in sensor networks, there are many diffi-
culties to be addressed. First, there is a lack of un-
derstanding of localization error and concavity. Second,
since the sensor network is discrete, due to boundary
noise, it is not easy to clearly specify the nodes that
are concave of the network. Third, for the available con-
vex decomposition schemes from the computer graphics
community, they target at continuous shapes and use
centralized solutions. Due to the nature of the random
deployment of sensor networks, it is impractical for a
man to manually identify convex/concave regions dur-
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ing deployment or just extract a graph of the network.
In addition, in our situation, the network is discrete and
the sensor nodes can only obtain local information by
message exchange. A low communication complexity
scheme is necessary considering the limited resource of
each sensor node. Fourth, after convex decomposition,
it is not straightforward to restore a global map with
the relative coordinates. In addition, the restoration al-
gorithm should be efficient considering that it is possible
that the network is decomposed into a great number of
convex subsections.

In this paper, we provide a systematic study on the
aforementioned problems. Our key contributions are
summarized below:

• We illustrate the intrinsic problems of localization
algorithm on concave-shaped networks. We show
that the location accuracy is closely related to the
angle at the concave points and it is also related
to the depth of the concave “valley”. After convex
decomposition, the depth of the valley becomes
irrelevant, however. With these observations, we
make a formal definition of network concavity ac-
cording to the angle at the concave point.

• We develop a distributed approximate convex de-
composition algorithm, based on the boundary
branches. Our algorithm has low communication
complexity.

• An improved MDS is applied in each convex sub-
section to compute the relative location map. The
computation of MDS is O(N3) but our improved
MDS has a complexity of O(N2).

• We have shown that our proposed ACDL protocol
is by no means exclusive. Instead, it can be easily
extended to incorporate other algorithms. For in-
stance, a fully distributed procedure for the local
relative map establishment using trilateration can
be developed. This variant of ACDL, denoted by
ACDL-Tri, only causes O(N) message cost and O(1)
computational cost. See the supplementary file.

The rest of this paper is organized as follows. Section 2
presents the motivation of our work and the background
of our convex decomposition scheme. Section 3 is de-
voted to our approximate convex decomposition based
localization algorithm. We evaluate the performance of
ACDL in Section 4, and section 5 concludes the paper.

2 MDS LOCALIZATION AND NETWORK CON-
CAVITY

Our localization protocol relies upon the convex decom-
position. To this end, one essential step is to identify
concave node(s). Our idea is quite simple: a boundary
node identifies itself a concave node when its curvature
is greater than a given threshold (Please refer to [5] for
the definition of boundary). We will define the node
curvature later. First we illustrate the intrinsic problems
of traditional algorithm on concave-shape networks.

TABLE 1: List of notations
Notation Definition

V The set of sensor nodes.
N The number of sensor nodes.
D The pairwise distance matrix of the network.
B The inner product matrix of D.

Ck(V ) The concavity of the network.
Nk(p) k neighborhood of p, which is the set of nodes

which are at most k hops from node p.
∂Nk(p) k-hop neighborhood of p, which is the set of

nodes exactly k hops away from node p.
Dp

k(q1, q2) The perimeter from q1 to q2 within ∂Nk(p).
|Dp

k(q1, q2)| The perimeter distance from q1 to q2 within ∂Nk(p).
ck(p) The k-hop curvature of node p.
Seci The i-th approximate convex subsection.
ni The number of sensors in Seci.
Di The pairwise distance matrix in Seci.
Bi The inner product matrix of Di.

Let N be the number of sensors in the network. (A list
of notations can be found in Table 1). Multi-dimensional
scaling [2] first computes an N × N distance matrix
D, which represents the pairwise distance between two
nodes, thereby calculating the inner product matrix B
of the pairwise distance matrix D. MDS then applies
spectrum decomposition on matrix B to extract all eigen-
values and their corresponding eigenvectors of matrix
B. Finally, MDS computes locations based on the first
2 largest eigenvalues and eigenvectors. MDS-MAP [24],
[25] is an MDS-based localization algorithm. It uses the
hop-count of the shortest path between two nodes as the
pairwise distance in the matrix. MDS-MAP works well
for the sensor field with a simple shape such as a square
or a disk. This is because the hop-count of the shortest
path between two nodes is a good approximation of the
Euclidean distance. For complex networks, this condition
could be no longer valid.

As a concrete example, in Fig. 1, we apply MDS-MAP
directly to an L-shape network (Fig. 1 (a)). In Fig. 1
(b), the line associated with each node is the deviation
between the real location and computed location by
MDS-MAP. Not surprisingly, the accuracy of MDS-MAP
is low. Especially, the nodes at the end of the two
arms of the L-shape network generally have greater
errors. To further understand the impact of concavity,
we evaluate another L-shape network in Fig. 2. Note
that the angle at the concave point in Fig. 2(a) is sharper
as compared to that in Fig. 1 (a). From Fig. 2(b), we
can see the location accuracy is even worse due to
the larger deviation between hop count distance and
Euclidean distance caused by larger angle at concave
point. Based on these experiments, it is easy to observe
1) the angle of the concave point is of crucial importance;
the sharper the angle is, the worse the performance of
MDS-MAP; and 2) the sensors at the two arms of the L-
shape network suffer greater errors. This indicates that
the depth of a concave valley can also be an important
factor. A natural idea is to decompose the network into
convex regions. To evaluate the effectiveness of such
idea, we manually decompose the L-shape network into
two convex subsections, see Fig. 1 (c). We then conduct
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the MDS localization algorithm, and the result is shown
in Fig. 1 (d). We see that the localization errors are greatly
reduced. In addition, the depth of the concave valley
becomes irrelevant.

With these observations, next we turn to the concave
node definition. We define the k neighborhood of node p,
represented by Nk(p), as the set of the nodes at most
k hops away to p. Let k-hop neighborhood of p, denoted
as ∂Nk(p), be the nodes exactly k hops away from p.
Intuitively, ∂Nk(p) can be treated as a (or a part of) circle
centered at node p.

For a boundary node p and two boundary nodes
q1, q2 ∈ ∂Nk(p), denote by Dp

k(q1, q2) and |Dp
k(q1, q2)| the

perimeter and perimeter distance from q1 to q2, respectively.
To estimate the perimeter distance, there are two cases:

1) If ∂Nk(p) is connected, Dp
k(q1, q2) is the set of nodes

on the shortest path from q1 to q2(including q1 and q2)
using the nodes in ∂Nk(p), and |Dp

k(q1, q2)| is the number
of sensors in Dp

k(q1, q2) minus one, as shown in Fig. 3(a).

1

p
q

2
q

(a)

2p
q

1 q

(b)

Fig. 3: Perimeter distance of boundary node p (shown in solid
rectangular). Boundary nodes are shown in empty rectangular.
The nodes in ∂N3(p) are shown in solid circle. Boundary nodes
q1 and q2 are p′s 3-hop neighborhood, and the hop-count is
indicated by the arrows. (a) ∂N3(p) is connected. The perimeter
distance |Dp

3(q1, q2)| = 13 − 1 = 12, c3(p) =
12
3π

= 1.27. If δ1 <
0.27, p will be a concave node; (b) ∂N3(p) is disconnected. The
auxiliary nodes to make ∂N3(p) a connected component are
shown in solid diamond, and �1 = 1. The perimeter distance
|Dp

3(q1, q2)| = (14−1)−1 = 12, c3(p) =
12
3π

= 1.27. If δ1 < 0.27,
p will be a concave node.

2) If ∂Nk(p) is disconnected, we use some auxiliary
nodes to estimate the perimeter and perimeter distance
in a greedy manner. More specifically, the boundary
node q1(or q2) initiates a flooding. When an intermediate
node q receives the flooding message, say, from q′, it
executes the following rules:

• if q has not received the message before, then q
keeps record of the parent node q′ and its hop
count distance to p, and forwards the message to
its neighbors;

• else if the hop count distance of q′ to p is no greater
than k and larger than that of the parent of q to p,
then q updates its parent node as q′, and forwards
the message to its neighbors;

• otherwise, q discards the message.
As such, the greedy path from q1 to q2 can be built, please
see Fig. 3(b). We denote by Dp

k(q1, q2) the nodes on the
greedy path. Note that the perimeter might be broken
into components owing to the presence of small holes,

and thus the auxiliary nodes will form connected compo-
nents. As such, the perimeter distance can be estimated
by (|Dp

k(q1, q2)| −
∑

i�i), where �i is the difference
between k and the minimal hop count distance of the
nodes in the i-th auxiliary connected component on the
greedy path. Obviously, this process is applicable for the
case when ∂Nk(p) is connected where

∑
i�i = 0.

With the obtained perimeter distance, we thus define
the concavity by:

Definition 1. Assume q1, q2 ∈ ∂Nk(p) are two boundary
nodes which are on the same boundary with p. The k-hop
concavity (or so-called curvature) of p, ck(p), is given by:

ck(p) =
|Dp

k(q1, q2)|
π × k

(1)

Intuitively, if ck(p) is equal to 1, p is not a con-
cave/convex point. Due to the discrete nature of wireless
sensor networks, the presence of boundary noise will
incur many boundary nodes have a curvature which
is larger than 1. As such, to control such boundary
noise, we introduce two thresholds and our definitions
on concave/convex nodes are as follows.

Definition 2. Given δ1 > 0 and δ2 > 0, a boundary node p
is a concave node if ck(p) > 1 + δ1, or a convex node if
ck(p) < 1− δ2.

Clearly, the larger the curvature of the concave node,
the larger the deviation between the real location and
computed location. Note that for a sensor network, there
can be many concave nodes. The concave node q with the
maximal concavity has the most significant influence on
the localization accuracy of the network. The network con-
cavity, represented by Ck(V ), is defined by the maximum
concavity of all concave nodes, Ck(V ) = maxs∈Vcck(s),
where Vc is the set of the concave nodes.

Based upon the definition of the concave/convex n-
odes, we will design a distributed algorithm in next
section, which can find the concave/convex nodes, de-
compose the network and compute the locations with
high accuracy. Note that the definitions of concavity and
concave/convex node depend on parameters k, which
corresponds to the depth of the valley, as well as δ1 and
δ2, which correspond to the sharpness of the angle. We
will conduct extensive simulations to study the impact of
the parameter settings. Intuitively, a smaller value of δ1
implies that more concave nodes will be identified, and
the network will be partitioned into more subsections,
each of which has a smaller concavity. Consequently,
within each subsection, the localization errors (defined
in Section 4) will be smaller. However, as the number
of subsections increases, the accumulated errors in the
process of merging local maps increase accordingly, and
the message overhead will also increase. On the other
side, if δ1 is larger, less concave nodes will be identified,
and the number of convex subsections (therefore the
accumulated errors) will also be smaller. However, the
localization errors of each subsection will become larger.
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Fig. 4: Localization for window-shape network with 5184 nodes and average degree 12.77. (a) Original map; (b) Concave/convex
nodes, k = 5, δ1 = 0.5, δ2 = 0.2. The red rectangular-shaped nodes are concave nodes and the blue diamond-shaped nodes
are convex nodes; (c) Boundary branches. Boundary nodes on different branches are marked different colors; (d) Cut trees. Cut
nodes are marked red; (e) Segment lines; (f) Approximate convex decomposition; (g) Localization result by our method. Average
localization error is 0.43; (h) Localization result by MDS-MAP. Average localization error is 2.18.

We conduct extensive simulations in Section 4 to study
the impact of the parameter settings.

3 APPROXIMATE CONVEX DECOMPOSITION-
BASED LOCALIZATION (ACDL)
3.1 An Overview of ACDL
We capitalize that since the sensor network is discrete, it
is impractical to decompose the wireless sensor network
into strictly convex subsections due to the boundary
noise. MDS-based localization tolerates localization error
gracefully due to its over-determined nature [23]. As
such, we only have to decompose the network into
approximate convex subsections. For each approximate
convex subsection, the maximal concavity is less than
the given threshold value 1 + δ1.

Our Approximate Convex Decomposition-based Lo-
calization algorithm consists of the following four steps:

(1) Concave/convex Node Recognition and Boundary Seg-
mentation: Assume we have the boundaries of the net-
work (boundary identification is out of the scope of our
paper and there are many existing works [5], [6], [22],
[30] and we use [30] in our simulation), we first identify
the concave and convex nodes. We then segment the
boundaries into several boundary branches using these
convex nodes. These branches will serve as the basis for
our decomposition.

(2) Approximate Convex Decomposition (ACD): The key
problem is to find the “lines” that can decompose the
network into convex subsections. These lines may end
at concave nodes (and boundary nodes). We develop a
distributed algorithm to identify these lines.

(3) Local Relative Map Establishment: We proposed an
improved MDS technique to build the relative map for

each convex subsection. Our algorithm has a computa-
tional complexity of O(N2) while the conventional MDS
is O(N3),

(4) Global Map Establishment: Finally, we will combine
the coordinates of all the subsections into a global map.
Note that the combination process will need to inform
each sensor in the subsection of the new coordinates. If
the combination process is conducted one subsection at
a time, such combination will be slow. Thus, we develop
an algorithm which can balance the time of combination
process and the message overhead.

3.2 Concave/Convex Node Recognition and Bound-
ary Segmentation

Given the definition for concave/convex node, we
present how each node identifies itself distributedly .

As discussed, each node first uses the technique in [30]
to identify whether it is a boundary node. For each
boundary node p, it first floods the network for k hops to
obtain its k-hop neighborhood ∂Nk(p). Two nodes who
belong to ∂Nk(p) and are also boundary nodes identify
themselves. Let these two nodes be q1, q2. q1 and q2 then
flood to derive the perimeter distances |Dp

k(q1, q2)| and
|Dp

k(q2, q1)|; and send this information to p. Obviously,
|Dp

k(q1, q2)| = |Dp
k(q2, q1)|. With the perimeter distance

|Dp
k(q1, q2)| estimated, node p computes its curvature and

identifies whether it is a concave/convex node, as shown
in Fig. 4(b). We show this process in Algorithm 1.

Using the convex nodes, the boundaries are automat-
ically segmented into several boundary branches, i.e., a
sub-boundary including all nodes between two adjacent
convex nodes; see Fig. 4(c) for an example. Each convex
node floods in the boundary nodes to segment the
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Algorithm 1 Concave/convex Node Recognition
1: p obtains its k-hop neighborhood ∂Nk(p), two of which are bound-

ary nodes, denoted by q1, q2.
2: p derives the perimeter distance |Dp

k(q1, q2)|.
3: p computes its concavity ck(p) using Equ. (1).
4: if ck(p) > 1 + δ1 then
5: Node p identifies itself as a concave node.
6: else if ck(p) < 1− δ2 then
7: Node p identifies itself as a convex node.
8: end if

boundary into several branches. When a boundary node
p receives a packet from a convex node, it sends this
packet to its neighboring boundary node if p is not a con-
vex node, otherwise it discards this packet. As such, each
boundary nodes will keep track of two convex nodes
which determine a unique boundary branch. Note that
it is possible that there are no convex nodes identified
for some boundaries (e.g., the boundaries of the inner
holes in Fig. 4). To deal with this, any node on each of
these boundaries floods within the same boundary; and
the node with smallest node ID will determine a unique
boundary branch. Based on these boundary branches,
we can find segment lines and decompose the network
into convex subsections.

As there can be several concave nodes that are
on the same boundary branch and within a smal-
l distance (e.g., k hops), resulting in a heavily frag-
mented network, we choose the concave node with
the largest concavity and disregard the others. Notice
that after this concave/convex recognition, every node
s in ∂Nk(p) obtains its distances to q1 and q2. We
denote these as hk(s, q1), hk(s, q2), and let Hk(s) =
max{hk(s, q1), hk(s, q2)}. We will see that Hk(s) is very
important for convex decomposition in Section 3.3.

3.3 Approximate Convex Decomposition (ACD)
In this subsection, we present a distributed algorithm for
ACD. The key is to find a line from each concave node
which reduces the concavity down to below the given
threshold 1 + δ1.

2

p
1

p

2

q
2

3

q1q
l2 l1

l
l3 l’

(a)

1
p

l1

(b)

Fig. 5: Segment line. (a) Two nearby concave nodes; (b)
One concave node.

3.3.1 Principle
Note that our goal is to decompose the network into
approximate convex components with less number of
components for achieving less accumulated localization

error. To this end, similar with [4], we try to connect two
nearby concave nodes if possible. Please see Fig. 5. In
Fig. 5(a), p1 and p2 are nearby concave nodes. Drawing
an angle bisector from each concave node will derive
three components. If p1 and p2 can be connected, the
number of convex components is only two. The connec-
tion between p1 and p2 can be done in two ways: 1)
Connecting p1 and p2 by a straight line l1. However, the
concavities of p1 and p2 can not be guaranteed to be
reduced down to below 1 + δ1; 2) Connecting p1 and
p2 by a curved line (e.g., l2, l3) which can reduces their
concavities down to below 1+δ1, with the possibility that
new concave node might be generated on the curved
line. Clearly, the curved line(e.g., l2) with the smallest
length is the best line since the possibility new concave
node generating on this line is the smallest. In Fig. 5(a),
the concavity of q2 is smaller than q3, so q2 is more
unlikely to be identified as a concave node. Note that
here q1, q2 and q3 are all on the perpendicular bisector
of the straight line p1p2. On the downside, q2 has a
concavity larger than the threshold and thus identifies
itself a concave node. For this case, an extended line is
needed for reducing the concavity of q2, e.g., l′2. When
there is a concave node that has no nearby concave
nodes, the concave node simply find a line, which can
reduce its concavity down to below 1+δ1, to the nearest
boundary, as shown in Fig. 5(b). As such, to conduct
approximate convex decomposition, an important step is
to find lines from concave nodes such that the number of
convex components is as small as possible; we call such a
line (e.g., l2 in Fig. 5(a), and l1 in Fig. 5(b)) from a concave
node as a segment line, which reduces the concavity of a
concave node down to below 1 + δ1.

3.3.2 Implementation
As discussed, the key of ACD is to find a segment line.
To that end, we propose a distributed algorithm of ACD
as follows. First, each concave node p initiates a flooding
within the network to figure out whether there is a near-
by concave node. When an intermediate node s receives
the flooding message from a concave node, say p, there
are two cases: 1) if s has not received a message from
any concave node, s will join the tree and broadcast the
message; or, 2) if s has already received a message before,
s will discard the newly arrived message. Eventually, a
tree rooted at concave node p will be constructed and we
call this tree concave tree, denoted by CT (p). Note that
in Sec.3.2, each node s who is k hops from a concave
node computes Hk(s). If node s has a concavity less than
1 + δ1, we call s a candidate segment node, which means
by connecting the concave node and s, the concavity of
the concave node can be reduced down to below 1+ δ1.

For each concave tree CT (p), there are two cases:
1) There is no adjacent concave tree rooted on different

boundary branches with p, which corresponds to the case
of p1 in Fig. 5 (b). For this case, we find a best boundary
node q ∈ CT (p) which satisfies that the shortest path
from p to q will cross at least one candidate segment
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node, and the concavity of q is the largest among all
boundary nodes on CT (p). This way, the shortest path
from p to q (i.e., the segment line) can reduce the
concavity of p down to below 1 + δ1.

2) There is one adjacent concave tree, say CT (p′), root-
ed on different boundary branches with p, corresponding
to the case of p1(or p2) in Fig. 5 (a), which implies that
these two concave nodes might be connected. As such,
we detect cut, denoted by C(p, p′), which are defined
as the nodes where two trees CT (p) and CT (p′) meet
(see Fig. 4 (d)), corresponding to the perpendicular line
l in Fig. 5 (a); and the nodes that lie on the cut are
called cut nodes. Further, we define a cut-pair (v, v′) as
two neighboring cut nodes v, v′ ∈ C(p, p′) on different
cut trees, where p and p′ are the roots of v and v′,
respectively. If a cut-pair (v, v′) ∈ C(p, p′) satisfies that the
two shortest paths from v to p and v′ to p′ both pass one
candidate segment node, these two paths together with
the path from v to v′ form a line (referred to as candidate
segment line) which can reduce the concavities of p and
p′, and decompose the network into two subsections
S1, S2. Clearly, the nodes on a candidate segment line
are possibly boundary nodes of S1, S2. However, there
can be more than one candidate segment line, and the
nodes (specifically, the cut-pair (v, v′)) on such line may
be concave for one subsection, say, S1. If we treat a cut-
pair (v, v′) as a dummy node v′′, then we only consider
the concavity at v′′ in S1.

Lemma 1. For two cut-pairs (v, v′), (s, s′) ∈ C(p, p′), if
d(v, p)+d(v′, p′) < d(s, p)+d(s′, p′), then we have ck(p′′) <
ck(s

′′) where s′′ is the dummy node by merging s and s′.

As such, we can obtain a segment line which cross-
es a cut-pair (v, v′) and satisfies d(v, p) + d(v′, p′) =
min∀(s,s′)∈C(p,p′){d(s, p)+ d(s′, p′)}. If ck(p′′) > 1+ δ1, we
extend the shortest path from v to p (or v′ to p′) until
the path meets a boundary node.

Corollary 2. If the segment line between two concave nodes is
the shortest path between them, then all nodes on the segment
line are not concave.

Theorem 3. All the subsections generated in above way are
approximately convex.

3.4 Local Relative Map Establishment
So far we have decomposed the network into several
convex subsections. We assume here that, there exists a
localization coordinator (or simply coordinator which can
be an arbitrary node) within each subsection, and the
coordinator is in charge of the process of local relative
map establishment. Let the number of sensors in Seci
be ni. Within one subsection, each node sends its neigh-
bor list to the coordinator (this process has a message
complexity of O(ni log2 ni)), which is subject to solving
the all-pairs shortest paths problem in undirected graph
with integer weights [26]. Next take the distance matrix
as an input, the coordinator applies an improved MDS
algorithm to establish a local relative map.

Given an ni × ni pairwise distance matrix Di of Seci,
MDS first constructs the inner product matrix Bi =
− 1

2HDiH , where H = I − 1
ni
eT e, I is an ni orders unit

matrix and e is an ni-dimensional vector of all ones.
MDS then conducts spectral decomposition on matrix
Bi = QΛQ, where Λ is the eigenvalues diagonal matrix
and Q is the eigenvectors matrix of Bi. The complexity
of spectral decomposition on matrix Bi is O(n3

i ).
Note that in MDS-based localization scheme, only the

first m (m = 2 for 2-dimensional networks and m = 3 for
3-dimensional networks) largest eigenvalues are used.
Thus we can use the power method of a matrix only m
times to obtain these m eigenvalues and eigenvectors,
instead of all eigenvalues and eigenvectors. The power
method (also known as the power iteration) of a matrix
B is designed for extracting the dominant eigenvalue
(i.e., the first eigenvalue with the largest magnitude) and
the corresponding eigenvector. Repeating power method
m times can derive the first m largest eigenvalues and
eigenvectors. In this paper, for each subsection Seci, it
will execute Algorithm 2 to localize those nodes in Seci.

Algorithm 2 Local Map Establishment
1: for all convex subsection Seci do
2: Coordinator p of Seci computes pairwise distance matrix Di in

Seci and the inner product matrix of Di, denoted by Bi .
3: Initialize:λ0 = 0, q0 = e
4: for k = 1 to m do
5: p uses power method on Bi −

∑k−1
0 λlqlq

T
l to extract the

largest eigenvalue λk and eigenvector qk .
6: end for
7: The locations of node sj in Seci are given as: Xij1 =√

λ1q1j , . . . , Xijm =
√
λmqmj

8: end for

3.5 Global Map Establishment

After assigning virtual coordinates within each convex
subsection, we now combine them to form a global map.
For every two adjacent subsections, there are some nodes
on their common segment line, which are assigned two
virtual coordinates accordingly. We find a linear trans-
formation for these common nodes using their two vir-
tual coordinates. Based on the linear transformation,we
combine these two subsections into a bigger one. Note
that the fact of non-overlapping partitions determines a
unique way of putting adjacent partitions together. This
way we can recover the global layout of the network.

In this subsection, we introduce a time round scheme
to minimize the time cost for global map establishment.
To clarify our statement, we use ACG (Adjacent Con-
straint Graph) of a network [10]. Here in ACG, each
vertex i represents a subsection Seci; and two vertexes
i, j are neighborhood if Seci and Secj are adjacent. Let di
denote the degree of vertex i which indicates how many
subsections adjacent to subsection Seci. Obviously, di
equals the number of segment lines in Seci. In addition,
each vertex i is assigned a weight wi. wi equals the
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(a) (b)
(c) (d)

Fig. 6: Flower, 2422 nodes, average degree 12.31. (a) Original map; (b) MDS-MAP(P); (c) REP; (d) ACDL.

(a)

(b)
(c) (d)

Fig. 7: Music, 1301 nodes, average degree 11.67. (a) Original map; (b) MDS-MAP(P); (c) REP; (d) ACDL.

node number in Seci and will be used in our merging
process. For two neighboring vertex i and j, if di > dj or
di = dj , wi > wj , vertex i merges vertex j which means
the coordinates of nodes in Secj will be transformed
in terms of the coordinate system in Seci, and these
two vertexes is treated as one larger vertex with degree
di = di + dj − 1 and weight wi = wi +wj − nij . Here nij

is the number of nodes on their common segment line.
Our algorithm starts with finding the linear trans-

formation between two neighboring vertexes i and j,
and then conducts the merging process round by round.
In each round, two neighboring vertexes will merge
together; and the number of vertexes will be reduced
by fifty percent. The merging process will end when all
vertexes are merged as one vertex; and the global map
establishment is completed (see Fig. 4(g)). The algorith-
m 3 shows the process of global map establishment.

Algorithm 3 Global Map Establishment
1: while The number of subsections is larger than one do
2: For every two adjacent subsections Secj and Seck ,
3: if dj < dk or (dj = dk and wj < wk) then
4: Seck = Seck ∪ Secj .
5: dk = dk + dj − 1, wk = wk + wj − nkj .
6: end if
7: end while

4 PERFORMANCE EVALUATION

4.1 Simulation Setup
We evaluate our algorithm on several network topolo-
gies, namely, Flower (Fig. 6), Music (Fig. 7), Smile (Fig. 8)
and Snake (Fig. 9). In these networks, nodes are uni-
formly distributed and have the same communication
range. Two nodes are connected if and only if the

Euclidean distance between them is no greater than a
given communication radio range R.

We compare our algorithm with MDS-MAP(P) [23]
and REP [14]. To evaluate the performance, two metrics
are used in this paper: localization error (LE) and average
localization error (ALE). LE of node p is defined as the
Euclidean distance between the estimated location of
p and its location. Besides, we refer to ALE as the
ratio of the mean localization error of each node to
the communication range R. To have absolute locations,
we randomly deploy three beacon nodes equipped with
GPS. The default parameters are k = 4, δ1 = 0.3, δ2 = 0.4.
More results can be found in the supplementary file.

4.2 Performance under Different Scenarios

We present our results in two different forms. First, we
show in Fig. 6, 7, 8, and 9 the localization error of
each individual node for six different network shapes.
Second, we summarize comprehensively, the statistical
localization error information of the four networks. We
show in Table 2 five kinds of localization errors, the
ALE, 5-percentile, 50-percentile, 95-percentile and the
maximum of the localization errors.

Fig. 6 shows the localization results using MDS-
MAP(P) (see Fig. 6(b)), REP (see Fig. 6(c)), and ACDL
(see Fig. 6(d)) on Flower-shape network. We can see
that in general REP and ACDL are all with reasonable
localization accuracies, where MDS-MAP(P) is much
worse. Looking into Table 2, we found that the ALE of
MDS-MAP(P) is 4.14, REP is 0.95 and ACDL is 0.69. This
is not surprising as in MDS-MAP(P), localization errors
will be accumulated during the process of merging local
maps, especially when the starting local map is not in a
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(a)
(b)

(c) (d)

Fig. 8: Smile, 2924 nodes, average degree 12.58. (a) Original map; (b) MDS-MAP(P); (c) REP; (d) ACDL.

(a)
(b) (c)

(d)

Fig. 9: Snake, 2759 nodes, average degree 8.17. (a) Original map; (b) MDS-MAP(P); (c) REP; (d) ACDL.

Model Scheme ALE 5-prtl 50-prtl 95-prtl Max
Err. Err. Err. Err.

MDS-MAP(P) 4.14 1.19 3.91 8.26 10.55
Flower REP 0.95 0.31 0.97 1.75 2.82

ACDL 0.62 0.10 0.69 1.36 1.56
MDS-MAP(P) 7.98 0.34 3.94 29.62 36.88

Music REP 1.89 0.26 1.82 4.47 6.72
ACDL 0.94 0.08 0.76 3.45 4.21

MDS-MAP(P) 3.95 0.67 3.76 8.01 10.95
Smile REP 1.06 0.46 1.02 1.33 1.63

ACDL 0.76 0.39 0.73 1.16 1.3
MDS-MAP(P) 5.02 0.72 3.38 17.72 23.19

Snake REP 1.31 0.54 1.34 2.66 4.29
ACDL 0.55 0.09 0.53 0.69 1.71

TABLE 2: Comparison of localization errors.

good position. ACDL is better than REP in ALE, 5% Err,
50% Err, 95% Err, and Max Err.

We next examine the performance of MDS-MAP(P),
REP and ACDL on Music-shape network (see Fig. 7).
As different from the Flower-shape network, there is
a concave hole in the topology. We see similar trend
for all three schemes as in the Flower-shape network
except that MDS-MAP(P) is extremely worse. Further,
looking into Table 2, we observe that the ALE and
Max Err of MDS-MAP(P) and REP are more than two
times larger than ACDL. The reason is that MDS-MAP(P)
localizes the network in an iterative fashion. After each
round of local map merging, newly localized map will
serve as a reference coordinate system to merge the
neighboring local map. As such, the localization errors
after each round will be accumulated. Obviously, the
node farther from the starting local map tends to have
larger error. REP estimates the distance between nodes
by constructing virtual hole, and it has dependency on
the right position of beacon nodes. ACDL is an MDS-
based algorithm; and ACDL does not suffer from the
accumulated errors and improper chosen beacon nodes.
Therefore the ALE and Max Err of ACDL will be smaller
than MDS-MAP(P) and REP.

We next examine the performance of MDS-MAP(P),
REP and ACDL on Smile-shape network (see Fig. 8).
Note that the accuracy of MDS-MAP(P) is extremely
poor. The localization errors of MDS-MAP(P) are four
times larger than ACDL, and twice than REP. When
looking into the logs of the simulation, we found that
the starting local map is not in a good position. Intu-
itively, the choice of the starting local map is crucial
for MDS-MAP(P). When the starting local map locates
in the “middle” of the network, the localization will be
relatively small, otherwise, errors will be accumulated,
and the localization accuracy is low. We can see that
ACDL and REP recover the network layout with small
localization errors while ACDL provides higher accuracy
than REP.

We finally study the performance of MDS-MAP(P),
REP and ACDL on Snake-shape network (see Fig. 9).
As different from the Flower-shape network, there is a
long and narrow neck in the topology. We see that MDS-
MAP(P) can not faithfully recover the network layout
while the results by REP and ACDL are both desirable.
Looking into Table 2, we observe, furthermore, that the
ALE and Max Err of MDS-MAP(P) are more than five
times larger than ACDL, while the ALE and Max Err of
REP are more than twice lager than ACDL. The reason is
that MDS-MAP(P) localizes the network in an iterative
fashion, and the localization errors after each round will
be accumulated while the performance of REP relies on
the properly chosen beacon nodes. ACDL is an MDS-
based algorithm; and ACDL does not suffer from the
accumulated errors. Therefore the ALE and Max Err of
ACDL will be smaller than REP and MDS-MAP(P).

Overall, MDS-MAP(P) suffers from accumulated er-
rors, and the performance of REP depends on the choice
of beacon nodes and properly constructed virtual holes.
As opposed to previous two methods, ACDL decompos-
es the network into convex subsections and uses MDS
to localize nodes in each subsection. As a result, ACDL
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can faithfully recovers the network layouts.

5 CONCLUSION

We have proposed a novel connectivity based algorithm,
Approximate Convex Decomposition based Localization
(ACDL), for localization of wireless sensor networks
in irregular shape networks. We overcame a series of
difficulties in concave/convex node identification, net-
work decomposition, MDS computation and global map
reconstruction. All these were achieved in a way that is
discrete, distributed, and low message and computation
overhead. The extensive simulations show the efficiency
of ACDL.

We believe that ACDL has room for improvement.
Besides, ACDL may incorporate with other localization
algorithms to further improve localization accuracy. In
future, we plan to explore the possibility of using lo-
calization results to facilitate data processing [8] and
collection [9], [29], coverage [21], [28], load-balanced
routing [13], diagnosis [19], and skeleton extraction [16],
[17] in sensor networks.
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