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We are in an age where people are paying increasing attention to energy conservation around the world. The
heating and air-conditioning systems of buildings introduce one of the largest chunks of energy expenses. In
this paper, we make a key observation that after a meeting or a class ends in a room, the indoor temperature
will not immediately increase to the outdoor temperature. We call this phenomenon Thermal Inertia. Thus, if
we arrange subsequent meetings in the same room; rather than a room that has not been used for some time,
we can take advantage of such un-dissipated cool or heated air and conserve energy. Though many existing
energy conservation solutions for buildings can intelligently turn off facilities when people are absent, we
believe that understanding of thermal inertia can lead system designs go beyond on-and-off based solutions
to a wider realm. In this paper, we give an experience towards this direction.

We propose a framework to explore thermal inertia in room management. Our framework contains two
components: 1) Energy-Temperature correlation model. This model captures the relation between indoor
temperature change and energy consumption. 2) Energy-aware scheduling algorithms. Given information
for the relation between energy and temperature change, energy-aware scheduling algorithms arrange meet-
ings not only based on common restrictions such as meeting time and room capacity requirement, but also

energy consumptions. We identify the interface between above components so further works towards same
direction can make efforts on individual component.

We develop a system to verify our framework. First, it has a wireless sensor network to collect indoor,
outdoor temperature and electricity expenses of the heating or air-conditioning devices. Second, we build
an energy-temperature correlation model for the energy expenses and the corresponding room temperature.
Third, we develop room scheduling algorithms. In detail, we first extend the current sensor hardware so
that it can record the electricity expenses in re-heating or re-cooling a room. As the sensor network needs
to work unattendedly, we develop a hardware board for long range communications so that the Imote2 can
send data to a remote server without a computer-relay close-by. An efficient two tiered sensor network is
developed with our extended Imote2 and TelosB sensors. We apply laws of thermodynamics and build a
correlation model of the energy needed to re-cooling a room to a target temperature. Such model requires
parameter calibration, and uses the data collected from the sensor network for model refinement. Armed
with the energy-temperature correlation model, we develop an optimal algorithm for a specified case. And
we further develop two fast heuristics for different practical scenarios.

Our demo system is validated with real deployment of a sensor network for data collection and ther-
modynamics model calibration. We conduct a comprehensive evaluation with synthetic room and meeting
configurations; as well as a real class schedules and classroom topologies of The Hong Kong Polytechnic
University, academic calendar year of Spring 2011. We observe a 20% energy saving as compared with the
current schedules.
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1. INTRODUCTION

There is a huge interest in building a green world recently. The key focus is ener-
gy conservation and energy efficiency. Computer scientists are actively contributing
our effort in two directions, 1) improve energy efficiency of computing systems, and
2) apply computing systems (e.g., sensor networks) for energy conservation in broader
disciplines.

For the first category, many studies are working on energy efficiency for data cen-
ters [Raghavendra et al. 2008][Shang et al. 2010], a top energy consumer among all
computing devices. While the energy expenses of computing industry is increasing fast
in recent years, the largest portion of energy consumption is still dominated by such
areas as commercial buildings, residential usage, transportation, manufactory indus-
try [USEnergy 2010]. Especially, for regions where the industrial sector is small, the
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electricity consumption by commercial buildings can be more dominating; for example
in Hong Kong, 65% of electricity in 2008 goes to the commercial sector [HKE 2010].

The heating and air conditioning of commercial buildings has the largest chunk in
energy expenses. In 2008 the Office Segment of Hong Kong, 54% electricity goes to
space conditioning (i.e., air-conditioning), 14% goes to lighting, 13% goes to office e-
quipments such as computers [HKE 2010]. Monitoring the conditions of the buildings
and efficient utilization of heating, ventilation, and air conditioning (HVAC) has been
a long time topic; and advanced commercial buildings can automatically turn off light-
s and HVAC systems of rooms when humans are not in presence. Nevertheless, we
notice that even if the heating or air-conditioning of a room is turned off, the heat or
the cool air will not immediately dissipate. We call this phenomenon Thermal Inerti-
a.1 We consider the un-dissipated cool or heated air a valuable resource that can be
utilized, so that future usage of this room can take the advantage without re-heating
or re-cooling the room. We believe that an understanding and application of thermal
inertia is very helpful as this can lead system designs go beyond the existing turning
facilities on-and-off based solutions to a wider realm.

Based on this thermal inertia, we propose an energy conservation room management
system. In this system, the allocation of the rooms of a building (or classrooms in
campus) is based not only on a schedule (e.g., meeting time, room capacity, facility
requirement), but also on the existing heating or air-conditioning conditions of the
rooms. In the rest of the paper, we will only use air-conditioning as an example to
ease our presentation. There will be only re-cooling energy analyzed instead of re-
heating/re-cooling in later analysis.

Our room management systems falls into an optimization problem with the objective
as minimizing the re-cooling energy consumption while satisfying all meeting require-
ments (e.g., meeting time, room capacity, facility requirement). It is not straightfor-
ward, however to know how much energy will be saved if a room is scheduled. As an
example, consider that the office temperature in Hong Kong is 26◦C (79◦F). Assume
a room was used 20 minutes ago, and its current temperature is 29◦C (84◦F). The
outdoor temperature is 37◦C (99◦F). If we schedule a meeting 5 minutes later in this
room, how much electricity is needed to re-cool it to the targeted temperature 26◦C
(79◦F)? Quantification of such question is essential for room scheduling decision mak-
ing, i.e., when we have to face a selection among multiple possible rooms. Thus we need
an energy-temperature correlation model to assist room scheduling. The correlation be-
tween energy consumption and indoor temperature change is affected by such factors
as the room specifics (size, wall materials, etc), current indoor temperature, outdoor
temperature and the targeted temperature etc. A key difficulty for building an energy-
temperature correlation model is to capture the correlation among these factors. The
more accurate this correlation model is, the better energy conservation scheduling re-
sult we can get on top of it. Building this model does not solely fall into the computer
science domain. Advanced thermodynamics theories may be needed.

After some studies on thermodynamics field, we abstract a framework for an energy
conservation room management system. This framework contains two components: 1)
An energy-temperature correlation model. This model offers energy consumption in-
formation to assist scheduling decision making. We summarize three methods which
can be used to implement an energy-temperature correlation model component. 2)
Energy-aware schedule algorithms. These algorithms schedule meetings based on not
only meeting requirements, but also information from energy-temperature correlation

1This name follows a recommendation from a senior practitioner and researcher from Building and Service
Engineering.
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Fig. 1. The framework of the room management system.

model. Moreover, we formally state our problem and prove it is NP-complete to find a
schedule which consumes the minimum energy.

We develop a system to verify our framework. When developing an energy-
temperature correlation model, we apply rudimental thermodynamics theory to build
a simple initial energy-temperature correlation model and calculate main parameters
from sensor data. We validate the effectiveness of such design by real experiments.
Based on the energy-temperature correlation model, we develop room scheduling al-
gorithms. We first develop an optimal algorithm for a special case where all rooms
are equal. For the general case, we develop two efficient heuristics. Besides a real
world system deployment for model validation and data collection, we evaluate our
system with comprehensive simulations with synthetic room configurations and meet-
ing schedules. We also evaluate our algorithms with real class schedules and classroom
topologies of The Hong Kong Polytechnic University, academic calendar year of Spring
2011. We observe that we can save 20% of electricity as compared to the current room
schedules. In the annual simulation, we can save 15% in winter and 26% in summer.

The remaining part of the paper proceeds as follows. We discuss the framework in
section 2 and give an overview to our system in section 3. In section 4, we present
our design of the sensor network. Section 5 is devoted to our energy-temperature cor-
relation model and real world experiment validations. We detail our room scheduling
algorithms in section 6. In section 7, we evaluate our algorithm comprehensively. We
present related work in section 8 and conclude the paper in section 9.

2. FRAMEWORK FOR ENERGY CONSERVATION ROOM MANAGEMENT SYSTE M

In this section, we first introduce our framework for energy conservation room man-
agement system. Then we formally state our problem for finding schedule with mini-
mum energy consumption and prove it is NP-complete. Finally, we introduce methods
for developing energy-temperature correlation model.

2.1. Framework

The high-level framework for an energy conservation room management system is
in Fig. 1. As a first work, we confine our study that given the schedules, how the
class/meetings should be arranged. We leave a detailed investigation of online room
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management as future work. We assume that times for all meetings are known. We
schedule meetings in order to save energy while meeting requirements such as ca-
pacity, facility are still satisfied. We show that minimizing energy consumption for
meetings with fixed time is NP-complete, too.

Our system have two main components: 1) an energy-temperature correlation model;
2) energy-aware scheduling algorithms. Room configuration and meeting requests are
input into scheduling algorithms. Room configuration contains all rooms’ information
such as room capacity, facility lists. Every meeting request contains start time, end
time, capacity requirement and facility requirement. The output of our system is a
meeting schedule.

When scheduling algorithms are processing meeting requests, we arrange meetings
in iterations. In every iteration, energy consumption results are offered by interfaces
between energy-temperature correlation model and scheduling algorithms. Schedul-
ing algorithms use results from these interfaces to make decisions. The interfaces are
specified as follows:

(1) Re-cooling energy consumption calculation. This interface calculates energy con-
sumed to re-cool a room to target temperature. The result is determined by the
physical factors of the room, target temperature of the meeting and time interval
between end time of previous meeting in the room and start time of the meeting
going to be arranged. We denote this interface as REj(Tt, t

′) where j is room index,
Tt is target temperature and t′ is time interval between two meeting.

(2) In-meeting energy consumption calculation. This interface computes energy con-
sumption during the meeting. When a meeting is hold, air conditioner keeps a room
at target temperature. In addition to physical factors of the room and target tem-
perature, the result is also related to meeting length. Schedule algorithm use this
information to avoid arranging meetings to energy-hungry rooms such as rooms
with large capacities. We denote this interface as Ej(Tt, t) where j is room index,
Tt is target temperature and t is meeting length.

Because building an accurate energy-temperature correlation model is hard, we
isolate the model and scheduling algorithms by these interfaces so that the method
used in building energy-temperature correlation model can be improved without af-
fecting the scheduling algorithms. Then energy-temperature correlation model can be
improved individually. We discuss choices for developing the model in section 2.3.

2.2. Problem analysis

We formally state the problem. Given a set R of n rooms and a set M of m meetings to
be scheduled. A meeting Mi ∈ M is associated with a time interval (bi, ei) and a target
temperature Tti, where bi, ei represent the start time and the end time of the meeting
respectively. Each meeting Mi has a capacity requirement ci and a facility requirement
fri which is a set of facilities. A room can only hold one meeting at a time. Room Rj

has a capacity Cj . Every room Rj is associated with a function Ej(Tt, t) showing the
energy needed to maintain the target temperature Tt for t and a function REj(Tt, t

′)
showing the energy needed to re-cool the room to Tt where last meeting has ended for
t′. Ej(Tt, t) and REj(Tt, t

′) are computed by the energy-temperature correlation model.
We want to find a schedule S with minimum re-cooling energy consumption while all
meeting requirements are satisfied. We call this schedule Minimum Energy Schedule.

THEOREM 2.1. Finding minimum energy schedule is NP-complete.

PROOF. In order to smooth our presentation, the proof is moved to appendix.
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Fig. 2. The third method for building energy-temperature correlation model.

2.3. Energy-Temperature correlation model

To accurately schedule rooms and maximally conserve energy, an important part
of an energy-aware room management system is that we need to build an energy-
temperature correlation model for every room so that the room scheduling algorithm
can run on top of it. More specifically, we need to implement interface Ej(Tt, t) and
REj(Tt, t

′) for every room j. There are two extreme ways for building such model.
First, we can apply advanced thermodynamics theories and material sciences to ex-
plicitly compute such functions. Second, we can build a database with entries of the
environment parameters (e.g., indoor temperature, outdoor temperature, and target-
ed temperature) and the corresponding energy consumptions. In the room scheduling
algorithm, whenever an estimation on the energy expenses is needed, an entry in this
database that has the most similar environmental configuration can be extracted.

The first choice falls into the expertise of Building and Service Engineering. Given
all detailed information about the building (Including location, structure, materials,
etc.) and environment information (such as weather data), there are simulation tools
such as EnergyPlus [Ene 2010] can be used to calculate energy-temperature correla-
tion. The accuracy of these simulation tools are heavily relied on input information.
Uncertainty of building specification can lead to significant errors in the predicted re-
sults[Chantrasrisalai et al. 2003][Tian and Love 2009][Zhou et al. 2008].

For the second choice, to build the correlation database, a sensor network can be de-
ployed to collect such data as temperature and energy expenses. The accuracy depends
on the granularity of the data collection. The more samples the database has, the more
accurate energy expense result it can find for a similar environmental configuration.
Building such database needs long time data collection.

There is a third choice which falls into a mixture of the two extremes( See Fig. 2).
We use an initial model following rudimental Fourier’s law of heat conduction. In this
model, some parameters are difficult to compute from theory. These parameters are
invariants, however, e.g., only affected by the materials of the room. Thus we inversely
calibrate these parameters using data collected by a sensor network.

3. OVERVIEW OF OUR ROOM MANAGEMENT SYSTEM

We build a system to verify our framework. We discuss some high level choices when
implementing our room management system. We choose the third method in section
2.3 to build an energy-temperature correlation model because this method captures
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parameters from data in a short time data collection. In most cases, we do not have a
clear building specification which is important in the first method. And it is also hard
to have long-term data collected by a monitoring system installed in the building. The
third method is very useful for these scenarios.

When we design the energy-temperature correlation model, we focus on rooms
whose energy consumption on air-conditioning can be measured individually. We s-
tudy single-stage heat pump air conditioner(AC). This kind of AC is widely used in
homes to cool a single area. When the AC is in operation, its heat pump runs at a fixed
speed. When the AC is not in operation, its heat pump is turned off. The AC turns
on and off the heat pump automatically in order to keep indoor temperature at target
temperature. We choose single-stage heat pump air conditioner because: 1) Compared
with central HVAC systems, it is more accessible; 2) it works for a single room and its
electricity consumption can be measured accurately; For central HVAC systems which
is common in commercial buildings, it is difficult to measure energy consumption for
conditioning every room because the cool air are produced by centralized chillers and
distributed to every room by ventiducts. We see the current trend of research is clearly
towards a finer granularity in monitoring of electricity consumption, and we believe
future researchers may touch this problem separately.

Another choice we make is that we choose electricity expenses, instead of energy ex-
penses, as our optimization metric. Different regions/countries may have different cost
on energy. For end-users, having their electricity bills cut could be more attractive as
it is directly related to money saving. In addition, we believe that there is positive cor-
relation between the electricity usage and the energy expenses, for example, in 2008,
85% of the energy consumed by commercial buildings in Hong Kong are electricity
[HKE 2010]; and a cut in electricity contributes to our effort towards development of
greener buildings.

In this system, we consider all meetings have same target temperature. As such, we
use E(t) and RE(t′) for short.

4. SENSOR NETWORK DESIGN

For a building, or a campus, there are multiple rooms. For each room, we need to
build an energy-temperature correlation model (details in section 5) to be used for
the scheduling algorithm (details in section 6). As such, a sensor network should be
deployed in each room. In this sensor network, there should be a sensor to record
electricity usage to air-conditioning the room. We also need to record the temperature.
As the temperature in different locations of the room may not be uniform, a set of
temperature sensors is suggested. We would like to comment that the sensor network
is only used for the construction of the energy-temperature correlation model for each
room. After the model is built, we can predict the energy consumption using the model.

Since the sensor network needed in each room is the same, in practice, we can deploy
a sensor network and build the energy-temperature correlation model room-by-room.

Our system needs to work unattendedly in a building for a period of time. The sen-
sors can usually be protected by a cover and placed on walls, roofs etc. However, it is
impossible to place a laptop computer (as a base station) unattendedly. The rooms are
public and the laptop computer can be stolen. This is in contrast to some smart home
systems, where we can assume that the laptop/desktop computer will work in a private
apartment. As the sensor network is deployed in buildings, power is not as critical as
those applications in the wild.

For some functions we need, there is no off-the-shelf component. Before discussing
the implementation of our sensor network, we extend the hardware and build an
electricity-meter and a long-range data communication module as follows.
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Fig. 5. The Sensor System. Here we present our enhanced Imote2 node and 3 TelosB temperature sensors.

4.1. Design of an Electricity-meter

Our system needs to estimate the energy consumption for air-conditioning the room to
a targeted temperature. We extend Imote2 with a PowerBay SSC VC to record elec-
tricity current (see Fig. 3). PowerBay SSC VC also becomes a power supply to Imote2.
In operation, PowerBay SSC VC will record the power (in Watt) and such data will be
digitized and output to Imote2. The data can then be transmitted out by Imote2.

4.2. A Long-range Data Communication Module for Imote2

We develop a long-range high-rate data communication module (LR-module) for I-
mote2 (See Fig. 4). This LR-module integrates a hardware network stack and is direct-
ly controlled by Imote2 node. Then Imote2 node can send data using TCP connections
through an Ethernet port. This choice avoids the high complexity of the network stack
and network card driver for the operation system designers, especially for a simple OS
like TinyOS.

Equipped with the LR-module, the data can be sent to a remote server, e.g., in prac-
tice, we use 3G. Note that the choice of 3G is not special. It is possible to develop a
module that use GPRS or WiFi for data transmission. We use 3G as it is more uni-
versally applicable than WiFi and has a greater transmission rate than GPRS. In our
experiment, the effective data stream throughput of our module can reach 520K bps.

4.3. Development of Sensor Network

We show the design of our sensor network by integrating these components. We de-
velop a two tiered sensor network. The first tier is a set of enhanced Imote2-based
electricity-meters. The second tier is a set of TelosB-based temperature sensors (see
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Fig. 5). For the first tier, an electricity-meter monitors the electricity usage of the air-
conditioner. It is also equipped with the LR-module and can communicate with a re-
mote server. The Imote2-based electricity-meter is powered by alternating current and
is thus not energy constrained. For the second tier, we deploy a few indoor and outdoor
temperature sensors. We use TelosB, as it is cheaper. To have better flexibility, in prac-
tice these temperature sensors can use batteries. TelosB is more energy efficient than
Imote2.

The routing architecture of our sensor network is from the temperature sensors to
the electricity-meter (one hop). We implement our sensor system in TinyOS, and use
Collection Tree Protocol (CTP) [Gnawali et al. 2009] for data routing among sensor n-
odes. The electricity-meter then sends these temperature data and its electricity read-
ings to a remote server directly (one hop but long range data communication).

The lifetime of our sensor system is determined by TelosB nodes if they use battery
power. In practice, every node gets the temperature and transmits 32 bytes every 10
seconds; The projected lifetime of our sensor network can thus reach 2000 hours. We
find that this is far enough for us to collect data and calibrate the energy-temperature
correlation model.

5. DESIGN OF ENERGY-TEMPERATURE CORRELATION MODEL AND EXPE RIMENTAL
VALIDATION

In this section, we develop a model where the electricity is a function of current in-
door/outdoor temperature and targeted temperature of a room. Our idea is as follows.
With our sensor network, we can measure the electricity usage, the indoor and out-
door temperatures and we know the targeted temperature in advance. If there is an
artificial perfect room with six identical walls with the same conductivity, we can eas-
ily build the energy-temperature correlation model for this room from Fourier’s law of
heat conduction [Lienhard.IV and Lienhard.V 2003]. We do not have a perfect room,
however. Materials, shape and conductivities of the six walls (i.e., four side walls, a
ceiling and a floor) are all different. Our key observation is that these factors are
invariants. They are determined by their physical materials and do not change (or
change ignorably) with outside factors.

Therefore, for each real-world room, we can build a virtual perfect room to mimic
it. For this room, we build an energy-temperature correlation model using Fourier’s
law of heat conduction with the set of invariants undetermined. To compute these
invariants, we collect a set of electricity and temperature data by our sensor network.
We then inversely derive these invariants. After fitting these invariants back to the
model, we use the calibrated model to compute (or predict) electricity usage under any
indoor/outdoor temperature and targeted temperature for this room. That is, we have
our model.

The concept using a virtual room to imitate a real-world room is widely deployed in
the thermodynamic field. In an extensive used tool EnergyPlus[Ene 2010], there is a
similar concept thermal zone. A thermal zone represents a room space. It is used to
catch the thermal factors of this space while ignoring some details of the room. For
example, a cuboid thermal zone is introduced to mimic a room space which is not of
regular shape. This kind of concept is effective in analyzing a thermal model.

In what follows, we first show the details of the development of our model. Then we
display our real-world experiment for validating our method.

5.1. Energy-Temperature Correlation Model

As explained, we use a virtual perfect room where all walls, ceiling and floor are made
of materials with the same thermal conductivity and have identical thickness; We
show that for any real-world room with different shape and different materials, we
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can build a virtual perfect room with uniformed parameters to emulate it. We also
assume the electricity-energy transformation rate r is a constant; this indicates when
an air-conditioner consumes one unit of energy, the energy injected into a room is con-
stant. In the case of single-stage heat pump air conditioner, this assumption holds
naturally because single-stage heat pump runs at a fixed speed.

Table I. Notation table

Notation Definition Unit

T Indoor temperature K or ◦C
P Electrical power of the air conditioner J/s
r Energy transformation ratio of the air-

conditioner
–

Pe Effective energy injected to the air of
the room per second, Pe = r × P

J/s

T̃o Average outdoor temperature of the
virtual perfect room

K or ◦C

To Temperature outside the real room K or ◦C
Tt Target temperature of a meeting K or ◦C
k Thermal conductivity of a material W/(K ·m)
L Thickness of a material m
A Total area of six walls m2

m Mass of the air in the room kg
C Specific heat capacity of air J/(kg ·K)
Q Heat transfer rate from outdoor to the

room
J/s

λ Conductivity of the room J/(s ·K)

Let T be the indoor temperature. Let T̃o be the average outside temperature of the
virtual perfect room. Let Q be the heat transfer rate from outdoor to the room. Let k be
the thermal conductivity of the material. Let A be the total area of the six walls. Let L
be the thickness of a material. According to Fourier’s law [Lienhard.IV and Lienhard.V
2003], we have

Q =
kA

L
(T̃o − T ) (1)

Eq. 1 basically says that the heat transfer rate is proportional to thermal conductiv-
ity of the material, the size of the walls, the temperature difference and is inversely
proportional to the thickness of a material. Given a fixed room (material, size and
thickness of walls are fixed), this law also tells us that heat transfer rate is proportion-
al to the outdoor/indoor temperature difference. Larger the temperature difference is,
more energy we consume on AC in unit time to compensate heat transferred from
outside.

Let Pe be the effective energy injected to the air of the room in every second. Let m
be the mass of the air of the room. Let C be the heat capacity of the air of the room.
In other words, C is the energy needed for one kilogram of a specific material (in our
context, the air) to increase one degree of Celsius. The temperature changing rate dT

dt
of the room is [Sauer et al. 2001]:

dT

dt
=

Q+ Pe

mC
(2)

Let λ = kA
L

. We say λ as the conductivity of this specific room. Combining Eq. 1 and
Eq. 2, we obtain the following function for indoor temperature change:
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T (t) = T̃o +
Pe

λ
+ (T (0)− T̃o −

Pe

λ
)e−

λ
mC

t (3)

Note that, Eq. 3 holds only if T̃o and Pe can be considered as constants in the time
interval from 0 to t. In reality, T̃o is effected by the outdoor temperature To. Moreover,
an air conditioner adjusts its instantaneous power P according to the indoor tempera-
ture. Thus Pe varies with time, too. But outdoor temperature and indoor temperature
of a room do not change abruptly, so for a short time interval(e.g., ten minutes) we
consider T̃o and Pe as constants. Because only a few walls of the room are exposed to
the open air, T̃o is partially related to To. We consider the relationship between T̃o and
To as a linear function T̃o = a0 + a1To where a0, a1 are constants and a1 ∈ [0, 1]. If we
read T , To, P every few minutes, we can change Eq. 3 to following expression:

T [n+ 1] = a0 + a1To[n] +
r

λ
P [n] + (T [n]− a0 − a1To[n]−

r

λ
P [n])e−

λ
mC

∆t[n] (4)

In Eq. 4, n represents the nth reading. ∆t[n] is the time interval between the nth
reading and (n + 1)th reading. T [n] is the indoor temperature of the room in the nth
reading, To[n] is the outdoor temperature and P [n] is the instantaneous power in the
nth reading.

The energy-temperature correlation model is Eq. 4 and λ, r, a0, a1 are unknown con-
stants. We will first use the sensor data to inversely compute invariants (λ, r, a0, a1) .

We use (λ̂, r̂, â0, â1) to denote them. Then we fit (λ̂, r̂, â0, â1) back into Eq. 4 (our energy-
temperature correlation model). When future prediction is needed, we use Eq. 4 with
λ̂, r̂, â0 and â1.

5.2. Parameter identification and re-cooling energy calcul ation

We observe that in Eq. 4, T [n + 1] is in a linear function of T [n],To[n] and P [n] if

e−
λ

mC
∆t[n] is constant. We consider λ as an invariant, because it is related to the physi-

cal properties of the materials. And mC is determined by the room size which is fixed,
too. Thus if we set all ∆t[n] as a constant time interval ∆̃t, we further simplify Eq. 4
as follows:

T [n+ 1] = kiT [n] + kc + koTo[n] + kpP [n]; (5)

In Eq. 5, ki is a constant related to the properties of the room and ∆̃t. kc is a con-
stant related to linear function T̃o = a0 + a1To. ko is a constant for indoor temperature
change in ∆̃t according to outdoor temperature in degree Celsius. kp is a constant for
indoor temperature change introduced by air conditioner in ∆t. The relations between
(ki, kc, ko, kp) and (λ, ∆̃t, r, a0, a1) are in the following equations set:











ki = e−
λ

mC
∆̃t;

kc = (1 − ki)a0;
ko = (1 − ki)a1;
kp = (1− ki)

r
λ
;

(6)

If we compute (ki, kc, ko, kp) from sensor data, we can solve equations set. 6 to get

(λ̂, r̂, â0, â1). Through the sensor network, we collect indoor temperature sequence
TSi = (Ti1, Ti2, . . .) for each sensor node i, outdoor temperature sequence ToS =
(To1, To2, . . .) and electricity sequence PS = (P1, P2, . . .). The time interval between two
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ALGORITHM 1: InvariantsCal()

Input: Indoor temperature sequences TS, outdoor temperature sequence ToS and power
sequences PS

Output: λ̂, r̂, â0 and â1

Step 1:
De-noise TS by wavelet method;

Step 2:
Calculate (ki, kc, ko, kp) by fitting ToS, PS and de-noised TS into Eq. 5;

Step 3:

Calculate (λ̂, r̂, â0, â1) by solving equation set 6;
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Fig. 6. Experiment Environment in the hotel room
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Fig. 7. Experiment Environment in
the residential room

reading is constant. We then apply Algorithm InvariantsCal() to calibrate (λ̂, r̂, â0, â1).
The algorithm has three major steps:

(1) De-noise TS: The readings from each sensor of the sensor network will not be the
same in practice even they are in the same room. We follow a common regression
model and wavelet method to process the observed data. There are many existing
similar methods [Wei 2005], yet wavelet method has been widely used in practice
[Li et al. 2002][Goswami and Chan 2011] as it is a powerful tool in time series anal-
ysis. We consider the temperature data collected from the sensor nodes as signals
containing noises. These signals follow a model OT (t) = MT (t) + ǫ(t), where OT (t)
are the observed temperature data, MT (t) are the main temperature change trend
in the room and ǫ(t) are the noises introduced by location differences of sensor n-
odes. OT (t),MT (t) and ǫ(t) are all in function of time t. We then follow the wavelet
method using wavelet transform to decompose the observed data into approximat-
ed and detailed coefficients and extract MT (t) from OT (t) while eliminating ǫ(t).
We call MT (t) de-noised TS.

(2) Compute (ki, kc, ko, kp): We calibrate (ki, kc, ko, kp) by fitting ToS, PS and de-noised
TS into Eq. 5. Because T [n + 1] is in a linear function of T [n], To[n] and P [n], we
choose least square method as the curve fitting method. Note that, the least square
method is not specific. It can be replaced by other curve fitting methods.

(3) Calculate (λ̂, r̂, â0, â1): We solve (λ̂, r̂, â0, â1) from (ki, kc, ko, kp) by equations set 6.

5.3. Experiment Validation

We conduct two real experiments to validate our model. It also serves as a test for our
sensor network. The first experiment was conducted in a hotel room in Shenzhen, Chi-
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na from March 2nd to 3rd 2011. The second experiment was conducted in a residential
room in Shenzhen, China from April 18th to 20th 2012. The configurations of the room
and sensor network are shown in Fig. 6 and Fig. 7 respectively. The configuration of the
room and there were nine indoor sensors (No. 1 to No. 9), one outdoor sensor (No. 10) to
collect temperature and an electricity-meter (No. 15) connected to the air-conditioner.
In all experiments, we periodically turned on and off the AC. Target temperatures are
21◦C and 20◦C respectively.

In order to measure the accuracy of our energy-temperature correlation model.
We choose a period of time (hours or a day). Using our energy-temperature correla-
tion model, we calculate energy consumption to achieve the same indoor temperature
change in this periods. We define error as follow:

error =
|EM − ES |

EM

× 100% (7)

Where EM stands for measured energy consumption, ES stands for simulated energy
consumption.

The result of the first experiment is shown in Fig. 8. The bottom part of Fig. 8 shows
the temperature of four indoor sensors and the outdoor sensor. The upper part of Fig.
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8 shows the corresponding output power level of the air-conditioner (in terms of Watt).
The second experiment has similar result(See Fig. 9). We can see that the air condi-
tioner turned on and off automatically when the air conditioner tried to maintain the
indoor temperature at target temperature.

Using Algorithm InvariantsCal(), we get parameters in the first experiments (λ̂ =
28.17, r̂ = −0.14, â0 = 23.8, â1 = 0.04) . Then we simulate the energy consumption in
five periods (17:10-18:20, 22:00-22:54, 8:00-9:00, 9:50-11:00, 12:05-12:50) when AC is
in operation. The result shows that for each period, there is a gap between measured
energy consumption and simulated energy consumption. Errors for each periods are
11.5%, 21.1%, 8%, 22.3% and 40% respectively.

We used data from 19th.April to calculate parameters in energy-temperature corre-
lation model and predict the energy consumption in 18th. April and 20th. April. The
result (See table II) shows that the daily errors are around 10% which is smaller than
errors in the hourly simulation of first experiment.

We admit that only with these experiments, we cannot show that our model can pre-
dict re-cooling energy for a long term. We think that it provides reasonable prediction
for a short term. This means that we can deploy sensors in each room and continue to
monitor the room thermal status to predict future re-cooling energy needed in short
term. We emphasize that with the current resource, we only have verification from
these two experiment and, though the cases seem acceptable, we admit more experi-
ments are necessary to improve the confidence of this model.

Table II. Measured energy consumption and simulated energy consumption

Predict day Measured energy consumption Simulated energy consumption Error
(J) (J)

18th,April 5.319× 106 4.69× 106 11.8%
20th,April 3.932× 106 4.338 × 106 10.8%

We want to further emphasize that after we have the energy-temperature correla-
tion model, we do not need the sensor network in the room. Our experience shows that
to build the model, it is enough to use the sensor network for a day or few. In our sen-
sor network, TelosB sensors used batteries and the electricity-meter uses alternating
current. The energy is not a problem. In addition, though the electricity-meter carries
its own data and the temperature data of TelosB sensors, the traffic throughput is also
not a problem. It is easy to see that our sensor network can be directly used in other
rooms too.

6. ROOM SCHEDULING ALGORITHM

With the energy-temperature correlation model, we are prepared to develop the room
scheduling algorithm.

We would like to comment that by no means our intention is to conserve energy
needed within meetings. Conservation of such energy is beyond the scope of this pa-
per; but we would like to admit that if the meeting time is long (e.g., three hours), the
proportion of the energy that we conserve as compared to the total energy of the meet-
ings can be small. Nevertheless, we are working on one of the most energy consuming
sectors of our society. The sheer amount of energy we conserve, as compared to not
using our system, is significant.

In this section, we first develop an optimal algorithm when the rooms are uniform.
For the general problem with non-uniform rooms, we develop two fast heuristics for
different scenarios.

We first define a concept of skyline. It indicates the last time each room is used. Our
algorithms will iteratively move the skyline to the end times of the schedule.
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ALGORITHM 2: Energy-Aware Room Scheduling (Uniform)

Input: 1) Meeting set M; 2) Room set R
Output: Meeting schedule
Sort meetings in M in ascending order of start time;
k1, k2, .., kn = 0;
i = 1;
repeat

Find Rj and Mi where bi − kj = min∀Rj∈R,bi>kj
{bi − kj};

Schedule Mi in Rj ;
kj = ei;
i = i+ 1;

until i! = m;

Definition 6.1. For n room, skyline is a set of numbers (k1, k2, . . . , kn), where kj is
the last time of room Rj usage.

6.1. Algorithm for uniform rooms

We call rooms are uniform if rooms have same capacity and same function E(t)
and RE(t′). Our algorithm Energy-Aware Room Scheduling (Uniform), Energy-
RS(Uniform) for short, is a greedy-based algorithm(See Algorithm 2). We sort the meet-
ings in ascending order based on their starting times. We then group the meetings with
the same starting time. Our algorithm performs in iterations, and in each iteration, we
handle a group of meetings with the current earliest starting time. We allocate these
meetings to the rooms that have ending times that are closest these meetings. We
proof the schedule result of algorithm 2 consumes the minimum energy and uses the
minimum number of rooms.

Our proof bases on one assumption: RE(t′) is a concave function of t′. We believe this
assumption is common in nature. In the first few minutes after a meeting ends and AC
is off, the difference between indoor temperature and outdoor temperature is big. Ac-
cording to Eq. 1, heat transfer rate is high which results in fast indoor temperature
change. When time passes, indoor/outdoor temperature difference is small, indoor tem-
perature increase slowly. We know that re-cooling energy consumption is large when
indoor temperature is high and vice versa. Thus changing rate of re-cooling energy
consumption decreases when t′ increases. In other words, RE(t′) is a concave function
of t′.

LEMMA 6.2. Let K be the set of permutations of numbers k1, k2, . . . , kn. For all Ki ∈
K, different skyline represented by Ki does not affect later scheduling.

PROOF. The rooms are uniform, so exchanging the order of rooms does not affect
later scheduling.

LEMMA 6.3. Let two uniform rooms R1 and R2 have skyline (k1, k2). For two un-
scheduled meetings M1(b1, e1) and M2(b2, e2), if k1 < k2 ≤ b1 < b2, the optimal schedule
should put M1 in R2 while placing M2 in R1.

PROOF. The total interval between the scheduled meeting and unscheduled meet-
ing (b1 + b2 − k1 − k2) is constant. For two uniform rooms, they have same function
RE(t′). Because RE(t′) is a concave function of t, we have the following inequality:
RE(b1 − k1) + RE(b2 − k2) > RE(b2 − k1) + RE(b1 − k2). As the total meeting length
of M1 and M2 is constant, re-cooling energy consumptions determine the difference
of total energy consumptions. We conclude it is more energy efficient to put M1 in R2

while M2 in R1.
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THEOREM 6.4. The total energy consumption by Algorithm Energy-RS(Uniform) is
minimum.

PROOF. We prove by contradiction. For any skyline (k1, k2, ..., kn) and two unsched-
uled meeting Mi,Mh(bi < bh), Mi is scheduled to Rj where bi−kj = min∀Rj ,kj≤bi{bi−kj}.
Assume the contrary holds, it is energy efficient to put Mi in Rl and put Mh to Rj . We
have kl < kj ≤ bi < bh. This violates lemma 6.3 and 6.2, where it is more energy
efficient to put Mi in Rj .

THEOREM 6.5. The total number of rooms scheduled by Algorithm Energy-
RS(Uniform) is minimum.

PROOF. For any skyline(k1, k2, ..., kn), Mi is scheduled to Rj in Algorithm Energy-
RS(Uniform). Assume there is a minimum room algorithm who puts Mh to Rj and put
Mi in Rl. We have kl ≤ kj ≤ bi ≤ bh. Thus, the position of Mh and Mi are interchange-
able. And according to claim 6.2, this interchange does not affect the later scheduling.
So the schedule result of Algorithm Energy-RS(Uniform) uses as many rooms as the
minimum room algorithm.

This theorem indicates that Algorithm Energy-RS (Uniform) will select the min-
imum number of rooms. This is useful for the general algorithm with non-uniform
rooms; since we try not to schedule meetings with small capacity requirements into
oversized rooms.

6.2. Rooms with Non-Uniform Capacity

6.2.1. Energy-RS(). When rooms have different capacities, we should always use room-
s which have smaller capacities because room with bigger capacity always has larger
size and re-cooling or maintaining the room at same target consumes more energy. Al-
gorithm Energy-Rs(Uniform) shows us that when arranging meetings in ascending or-
der of start time, it is energy efficient to schedule a meeting to the room which has the
closest ending time. Based on these ideas, we develop algorithm Energy-Aware Room
Schedule (Energy-RS()). We outline our basic idea. Assume the number of different ca-
pacities of all rooms is g. We classify the rooms into different groups RG1,RG2, . . . ,RGg

according to their capacity. Let GCk be the room capacity of RGk. We have ∀Rj ∈ RGk,
Cj = GCk. Assume RG1,RG2, . . . ,RGg is sorted in ascending order according to their
capacity GCk. We classify the meeting into different groups MG1,MG2, . . . ,MGg ac-
cording to the capacity requirements of the meetings. For a meeting Mi with a capacity
requirement ci, it is grouped into MGk where GCk−1 < ci ≤ GCk. As an example, as-
sume the room capacities of all rooms are 20, 40, 60. The meeting requirements are
17, 18, 34. We thus classify the meetings with capacity requirements of 17 and 18 into
the group of 20 and the meeting with capacity requirement of 34 into the group of 40.

We schedule meetings of MGk into room group RGk in ascending order of k. If
there is some meetings cannot be scheduled, we move these unscheduled meetings
into MGk+1. When scheduling meetings of MGk into RGk, we need to make sure fa-
cility requirements are satisfied. We first sort meetings in descending order of facility
requirement. If meetings have same facility requirements, they are sorted in ascend-
ing order of start time. Then we start scheduling with meetings which need the largest
number of facilities. In each iteration, we first check whether current meeting can be
inserted into the time interval between two arranged meetings in a room. If the meet-
ing can be inserted and the room satisfies meeting’s facility requirement, we arrange
current meeting in this room. Otherwise, we arrange current meeting to room with
closest ending time.
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Table III. Room configuration of PolyU

Cap Num Size λ mC P
(Seats) (L×W ×H, m) (J/s ·K) (J/K) (W)
20 8 4× 5× 3 49.8 1200 1500
40 42 8× 5× 3 83.7 2400 2400
60 67 6× 10× 3 114.5 3600 4700
80 10 8× 10× 3 142.0 4800 6200
100 4 10 × 10 × 3.3 175.9 6600 9400
150 17 10× 15× 4 265.0 12000 15600
200 5 15× 14× 5 376.3 21000 21900
300 2 15× 20× 6 540.6 36000 31300

CLAIM 6.6. The complexity of Algorithm Energy-RS() is O(nm).

6.2.2. TimeUr-RS(). In our framework, each meeting has a capacity requirement and a
meeting time requirement. This is the case for many scenarios. For some cases, howev-
er, the meeting time can be determined by the room scheduling system. For example,
in the class schedule of The Hong Kong Polytechnic University, lecturers does not have
two lectures in one day. So lecture times does not need to be fixed at a specified time of
a day as long as facility requirements are satisfied.

We propose a simple greedy-based algorithm which allows reassignment of meet-
ing times, we call Time Unrestricted Energy Aware Room Scheduling (TimeUr-RS()).
TimeUr-RS() is greedy. It sorts meeting capacities in descending order and then fits
meetings into the rooms. Similar to Energy-RS(), for meetings with same capacity re-
quirement, we first arrange ones need the largest number of facilities. This algorithm
can be used to provide suggestions for the decision makers, in case there is no compul-
sory reason to have strict meeting times. In our simulation, TimeUr-RS() is used as a
performance comparison.

7. PERFORMANCE EVALUATION

We evaluate our system in two settings. The first one is real class schedules and class-
room topologies of The Hong Kong Polytechnic University (denoted PolyU thereafter),
academic calendar year of Spring 2011. The second is a set of synthetic room arrange-
ments we generate semi-randomly. For facility requirements, we consider projector,
which is commonly used in meetings.

We choose our primary performance metric as the total energy needed to re-cool the
rooms to the target temperature for all rooms and all meetings. Note that we exclude
the energy needed during the classes, which we cannot conserve. This metric is stable
for all room scheduling algorithms.

7.1. PolyU Data

7.1.1. Simulation setup. We first study a set of real data from PolyU. PolyU has 155
classrooms (see Table III for the full configurations) and all classrooms have projectors.
Because the main purpose of the simulation of HK PolyU data is not to evaluate our
modeling for thermal inertia, which we have done in section 5, but to provide a fair
input to evaluate the performance of our room scheduling algorithms, we construct
models for the classrooms instead of building the models from data in real deployment.
We assume that the materials of walls, floors and ceilings of the HK PolyU classrooms
are the same to that of the hotel room in section 5.3. Then λ and mC are calculated
based on the room size. We also assume single-stage heat pump ACs are used in all
classrooms and P is assigned according to the volume of the room.

The default values of our simulation are r̂ = −0.14, â0 = 23.8, â1 = 0.04 for all rooms.
We set the target temperature Tt = 20◦C for all meetings.
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Fig. 10. Re-cooling energy in weekdays
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Fig. 11. Monthly recooling energy consumption.
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Fig. 12. Monthly recooling energy consumption
ratio.

We directly compare the schedules computed by our algorithms (denoted as Energy-
RS and TimeUr-RS) with the existing schedule (denoted as Real). We use our model to
compute energy consumptions.

To further verify our performance of our algorithms, we conduct a long term simu-
lation with the assists of EnergyPlus. The input of EnergyPlus is a complex building
description file (i.e., a model of the building, with room sizes, materials, HVAC sched-
ules, etc) and the output of EnergyPlus is an estimated energy consumption of this
building under this configuration. In our simulation, we first construct an artificial
building with 155 rooms. Then we use room meeting schedules to configure the HVAC
schedules; for example, if a room is in use, the HVAC of this room is on. The building
and the HVAC configurations are combined to create the building description file and
input into EnergyPlus. We can thus obtain the energy consumption for any meeting
schedule for this building. In this simulation, we set target temperatures for cooling
and heating as 25oC and 20oC respectively. We also compare the three schedules: Real,
Energy-RS and TimeUr-RS.

7.1.2. Simulation Result. Though the academic calendar year of Spring 2011 spans for
an entire semester, the class schedule for each week is the same. For example, the class
schedule of PolyU of every Monday (or any other weekday) is the same in the entire
semester. As such, we will only schedule for five weekdays and our schedule can be
used in every week of the semester.

Fig. 10 summarizes the results from our model. We can see that every day the re-
cooling energy needed is approximately the same. This is because the total classes in
different weekdays are more or less the same, which is the usual case of a university.
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We also see a general 20% conservation in electricity for each weekday. If there is less
restriction in class time, then we will achieve higher energy conservation.

The monthly simulation result from EnergyPlus is shown in Fig.11. From May to
October, all schedules consume a lot of energy. This is because Hong Kong is a sub-
tropics city and it has a long summer. In April and November, because the outdoor
temperatures in days are about 20oC to 25oC, so there is less need for cooling and
heating. The energy consumptions in this two months fail to the valley. We also see
big energy consumptions in January, February and March. The energy consumption in
this period are used for heating.

Next, we compare the energy consumptions in different schedules. Compared with
real schedule in PolyU, both Energy-RS and TimeUr-RS saves about 14700 kWh in
one year, which is 20% of the annual energy consumption of current schedule. In de-
tail (See Fig.12), Energy-RS saves about 15% in winter months. In summer month-
s, the proportion of conserved energy increases and reaches the submit 26% in July.
TimeUr-RS show different trends. In most of the cases, TimeUr-RS saves more ener-
gy than Energy-RS. But in winter months(January, February, December), the energy
consumed by TimeUr-RS is more than energy used by Energy-RS. And it is even high-
er than consumption of real schedule in January and December. We think the reason
for these results is that when TimeUr schedule meetings, it will arrange meetings s-
tarting from the early morning. Outdoor temperature in the morning is lower than
temperature at noon. In summer, arranging meetings in early morning will save en-
ergy for cooling rooms, But in winter, this decision costs more energy to heat rooms.
From this result, we find outdoor temperature change should be considered when we
are deciding whether to arrange meeting as early as possible.

7.2. Synthetic Data

7.2.1. Simulation setup. For synthetic data, we choose to compare our algorithm with
an ad-hoc room scheduling algorithms (denoted as RS) that can satisfy the meeting
time, room capacity requirements and facility requirements. Though there are differ-
ent classroom scheduling algorithms, there is no algorithm with an objective or con-
straint on energy considerations. As our paper focus on energy conservation, it is our
intension to simplify the room scheduling algorithms. The ad-hoc room scheduling al-
gorithm is a greedy algorithm where we schedule each incoming meeting request to
the smallest room available that can entertain such request.

We consider rooms with uniform capacity and non-uniform capacity separately. For
the uniform case, the default room capacity is 100 seats and the total number of rooms
is 150. The meeting times are randomly generated in range [8:00, 22:00]. The lengths
of the meetings are randomly chosen from a few fixed options, as we believe most
meetings have semi-fixed length. We have three options, O1 = [1, 1.5, 2, 2.5, 3], O2 =
[1, 2, 3], O3 = [1, 2]. That is, for O1, the meeting lengths are randomly chosen from one
of the five choices, 1, 1.5, 2, 2.5, or 3 hours.

For the non-uniform capacity case, we have eight different types of rooms with ca-
pacities of 20, 40, 60, 80, 100, 150, 200, 300 (similar to PolyU). The numbers of different
types of rooms follow a Poisson distribution with a mean of 3. This indicates that the
majority of our rooms are those with capacity of 60 seats. The total number of rooms is
also 150. There are 70 projectors uniformly distributed among the rooms. The meeting
times are randomly generated in range [8:00, 22:00]. The length of the meetings are
also from the three options, O1, O2, and O3. The capacity requirement for the meet-
ings follows a poisson distribution with a mean of 3. The facility requirements follow a
standard uniform distribution.
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Fig. 13. Total energy expense for re-cooling the rooms as against to the number of meetings; rooms with
uniform capacity. (a) meeting length: option O1, (b) meeting length: option O2, (c) meeting length: option
O3.
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Fig. 14. Re-cooling energy ratio.
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Fig. 15. Re-cooling energy as a-
gainst room capacity
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Fig. 16. Re-cooling energy as a-
gainst target temperature.
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Fig. 17. Total energy expense for re-cooling the rooms as against to the number of meetings; rooms with
non-uniform capacity. (a) meeting length: option O1, (b) meeting length: option O2, (c) meeting length: option
O3.

7.2.2. Simulation Result. In Fig. 13, we show the total energy for re-cooling the rooms
for different algorithms. In Fig. 13 (a), we see that the re-cooling energy needed for ad-
hoc room scheduling RS is always greater than our algorithm Energy-RS and TimeUr-
RS. This is not surprising as the RS only satisfies the meeting requirements. When the
number of meetings increases, we can see that all three algorithms need more energy
in re-cooling the rooms. This is because there are more meetings and more rooms to
be used. RS increases much faster than our algorithms, however; as both of our al-
gorithms have taken the energy conservation into consideration. More specifically, we
can see that if there are 600 meetings to schedule, the total electricity needed by RS,
Energy-RS and TimeUr-RS is 920 kWh, 351 kWh, and 279 kWh respective. We can see
that we have reduced the electricity consumption for more than half. If the meeting
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time is not restricted, we can make a suggestion on meeting times so as to reduce the
electricity consumption to less than one third.

We then see Fig. 13 (b) and (c) where the meeting time is randomly chosen from O2

and O3. We see similar trend as that in Fig. 13. We also see that the less number of
choice that we have in meeting time, the greater the benefit of our algorithms. This is
because if there is a smaller number of meeting length options, there is also a smaller
number of small time segments that we cannot fit the meetings in due to more irregu-
lar meeting time length. On the contrary, we do not see improve for RS as its schedule
is ad-hoc.

This can be more clearly seen from Fig. 14. We call the re-cooling energy ratio as the
re-cooling energy needed by Energy-RS (or TimeUr-RS) as against to the re-cooling
energy needed by RS. In Fig. 14, we plot the re-cooling energy ratio for the case where
the number of meetings is 600. We can see that when the meeting lengths become more
uniformed, the re-cooling energy ratio of Energy-RS and TimeUr-RS becomes smaller.
This suggests that to save more energy, it is better to have the meeting length more
uniform.

The energy consumption is closely related with the target temperature. We adjust
the target temperature Tt from 20◦C to 24◦C. From Fig. 16, we see that every degree
counts! For example, the re-cooling energy is around half if we increase our target
temperature from 20 to 23. This suggests that the best way to save energy is to set the
temperature bar higher. Our algorithm again significantly outperforms RS.

Fig. 15 shows re-cooling energy needed when we use different room capacity (our
default is 100 seats). The total number of meetings is 800 and we choose O3 as our
meeting length. Clearly, the larger the room capacity, the more re-cooling energy is
needed for all algorithms. Our algorithms greatly outperform RS for more than 50%.

We then study the general case where rooms are of non-uniform capacity. We show
the results in Fig. 17. We see that the gain of Energy-RS is smaller. This is because, in
each type of room capacity, we have a much smaller number of meeting choices. If one
takes a closer look at Fig. 13 (a), we can see that the best performance arrives when
the number of meetings is 800. When the number of meetings is 100, or 50, the gain is
smaller. In our general case, we have 8 different types of rooms resulting in a smaller
number of meetings in each type. Thus, the gain is smaller. We can summarize that
the more meetings, the more choices; leading to more re-cooling energy needed; and a
better performance of Energy-RS as compared to RS.

8. RELATED WORK

We are in an age where people are paying increasing attention to energy conserva-
tion around the world. Computer scientists study energy conservation of data centers
[Raghavendra et al. 2008][Shang et al. 2010], and backbone routers [Zhang et al. 2010].
The general principle of these works is to turn off unnecessary usage of machines and
reschedule their load. To assist data center monitoring, sensor network is used for
energy sensing [Liang et al. 2009].

There are many efforts in developing smart homes and buildings. In [Jiang et al.
2009a][Jiang et al. 2009b], an energy auditing network is built. One main objective
is to have a fine-grained granularity on electricity readings for all equipments. As a
continuation, in [Dawson-Haggerty et al. 2010], sMAP is developed, which can record
different physical readings and provide general interface for different applications. In
[Hnat et al. 2011], a large scale sensor network for residential sensing was experi-
mented for more than 20 homes.

Nowadays, many buildings can turn off facilities when people are not in presence.
Many recent studies used sensors and actuators to collaboratively monitor buildings
to assist the turn-off decisions [Lu et al. 2010a][Schor et al. 2009]. Smart-thermostat
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[Lu et al. 2010b] developed motion sensors and door sensors to model the occupancy
pattern of people at home. It will turn off the light, air-conditioning etc when people
are absent. A similar system [Padmanabh et al. 2009] analyzes the occupancy against
pre-booked conference rooms, so as to turn off unnecessary energy usage.

In a recent Proceedings of the IEEE special issue on cyber-physical systems, an in-
vited paper [Aswani et al. 2012] presents a learning-based model predictive control
scheme. It estimates room occupancy based on temperature measurements, i.e., it
shows the impact of different number of people to the room temperature. The effect
of human activities have been studied much earlier in [Wang and Jin 1998][Schell and
Inthout 2001]. CO2 is taken as an indicator of the occupancy to control the ventilation
system. These schemes have a slow detection time, however. Therefore, real-time de-
tection methods are proposed [Agarwal et al. 2010][Agarwal et al. 2011]. They choose a
combination of magnetic reed switch door sensor and passive infrared sensor to build
an occupancy platform and a duty-cycling HVAC system is developed. In [Erickson
et al. 2010] a wireless camera sensor network is deployed to collect data related to
occupancy. In a follow-up study, OBSERVE [Erickson et al. 2011] is proposed, in which
a markov chain model is trained to predict the occupancy distribution and optimize
ventilation level. With participation of people in the room, TempVote [Erickson and
Cerpa 2012] saves energy while people are satisfied with the conditioning. EarlyOff
[Ellis et al. 2012] predicts the schedule of room usage and turns off ACs before people
leave the room.

In order to accurately control HVAC system and save energy, researchers use data-
driven building energy modeling to provide information for control decision making.
One focus is modeling and controlling the HVAC systems by investigation of physi-
cal factors. In [Oldewurtel et al. 2010][Henze et al. 2004] [Tashtoush et al. 2005][He
et al. 2005] the HVAC systems are modeled where the weather conditions are taking
into consideration. In [Deng et al. 2010] the thermal dynamics of a building is mod-
eled. EnergyPlus [Ene 2010] is similar, yet it is one most sophisticated tool for thermal
dynamics modeling in buildings. Both [Deng et al. 2010] and EnergyPlus require so-
phisticated inputs which may not be easily obtained in certain situations.

In traditional meeting scheduling algorithms, their main focus is finding a time
and place when and where all participants are available [Chun et al. 2003]. In U-
niversity Course Timetable Problems [Burke and Petrovic 2002][Lewis 2008][Socha
et al. 2002], which are known NP-complete, the primary objective is finding a feasible
course timetable for professors and students. Many objective/constrains, such as com-
fort, are considered in existing scheduling algorithms [Elmohamed et al. 1998][Carter
2001][Murray et al. 2007]. To the best of our knowledge, only few works consider
energy-aware meeting scheduling algorithms[Majumdar et al. 2012], but they did not
consider energy models which is main input of the algorithms.

Our work focuses on thermal inertia, which is a new concept that can save energy in
buildings. We present a framework, which guides how to apply thermal inertia in en-
ergy conservation in rooms. In our framework, a good energy-temperature model (i.e.,
a thermal model) can surely improve the accuracy of room scheduling and increase
energy conservation. Given that an accurate energy-temperature model is difficult to
build, we discussed a few choices on the model, develop a simple model and conduct
verification, though we admit that more experiments are needed to improve the con-
fidence of the model or make adjustment to the model. We complete the framework
with a set of room scheduling algorithms. Our work is a step towards understanding
thermal inertia, and using it for energy conservation.
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9. CONCLUSION AND FUTURE WORK

In this paper, we took the advantage of Thermal Inertia; that is, after a meeting ends
in a room, the cool air will not immediate dissipate. We proposed a new room man-
agement system for energy conservation. We abstracted the framework for this kind of
system. We extended sensor hardware (some of which can be used beyond this work)
and designed a two tier sensor network. We develop an energy-temperature correlation
model and validate the model with our sensor network in real-world experiment. We
further developed efficient room scheduling algorithms. Comprehensive simulations
on synthetic data and a real class and room configuration of The Hong Kong Polytech-
nic University were conducted.

As a first work in Thermal Inertia, our work has many limitations. First, in our
current paper, we assume the meetings are determined in advance. This is true for
university schedules. However, many companies/hotels/restaurants face online room
booking. Second, other factors such as human and heat from electronic devices are
not considered in current energy-temperature correlation model. We leave developing
a more detailed model in future work. Third, in the current schedule, we assume the
room capacity and facility are the constrains to meetings. We admit that there are
other constraints, such as the distances between rooms so that people have enough
time to go from one room to another. To facilitate future studies, we release an open
source for our energy-temperature correlation model in MatLab[Yuan et al. 2011]. One
can use our work to generate realistic input on energy consumptions for different room
scheduling problems. Fourth, our electricity-meter can only measure energy usage of
general air-conditioners. We plan to develop advanced meters for central controlled air-
conditioners. Fifth, we only consider energy as our objective in scheduling meetings.
There are other objectives, such as comfort which are also important in a schedule. We
leave these objectives to future work in improving scheduling algorithms.

APPENDIX

Proof for theorem 2.1.

PROOF. It is easy to verify that calculating re-cooling energy consumption of a
schedule is NP. Therefore, the minimum energy schedule problem is in NP class. To
shown this problem is NP-complete, we reduce a job schedule problem to it. The former
is proven NP-complete in [Arkin and Silverberg 1987]. The proven theorem is stated as
follow: Given a set J = {J1, J2, . . . , Jn} of n jobs, job Ji has fixed start time and end time
(si, ti). Given a set of k non-identical machines, every job Ji can only be processed on a
subset of machines. It is NP-complete to determine whether all jobs can be processed.
This statement also indicates finding the minimum number of machines to process all
jobs is NP-complete.

Given an instance (J, U, JU): J = {J1, J2, . . . , Jn} is the set of n jobs, U =
{U1, U2, . . . , Uk} is the set of k machines and JU = {JU1, JU2, . . . , JUn} is the family of
subsets of U . Ji has fixed start time and end time (si, ti), and can only be processed on
machines in JUi. We construct a set of meetings M = {M1,M2, . . . ,Mn} and a set of
rooms R = {R1, R2, . . . , Rk}. bi and ei for Mi are equal to si and ti of Ji respectively. All
meetings have same capacity requirement c̄, all room have same capacity C̄ and c̄ < C̄.
For every meeting Mi, we create a type of facility fi and Mi’s facility requirement
fri = {fi}. Rj has facility fi if and only if Uj ∈ JUi. Let all meetings have same Tt and
let the outdoor temperature be a constant. We build a simplified energy-temperature
correlation model: All rooms have same function E(Tt, t) to calculate in-meeting energy
consumption. Thus room change does not affect total in-meeting energy consumption.
For every room Rj , REj(Tt, t

′) = a1 if a meeting is the first meeting in the room, oth-
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erwise REj(Tt, t
′) = 0 for following meetings in the room because following meetings

take advantage of cooling air from the first meeting. a1 is a positive constant.
We next show that by finding the minimum energy schedule S, we can find the min-

imum number of machines to process all jobs in polynomial time. Replacing (Mi, Rj)
in S with (Ji, Uj), we have a job schedule S ′ which is a valid schedule for all jobs. The
number of rooms occupied in S is equal to the number of machines used in S ′. The total
re-cooling energy consumption of S is expressed as REtotal = ha1 where h is the num-
ber of rooms occupied. Because a1 is a positive constant, REtotal is minimum when h is
minimized. In other words, the minimum energy schedule S uses minimum number of
rooms. Thus S ′ use the minimum number of machines.
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