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Abstract—Recently, the cloud systems face an increasing num-
ber of big data applications. It becomes an important issue for
the cloud providers to allocate resources so as to accommodate as
many of these big data applications as possible. In current cloud
service, e.g., Amazon EMR, a job runs on a fixed cluster. This
means that a fixed amount of resources (e.g. CPU, memory) is
allocated to the life cycle of this job. We observe that the resources
are inefficiently used in such services because of resources usage
unbalance. Therefore, we propose a runtime elastic VM approach
where the cloud system can increase or decrease the number
of CPUs at different time periods for the jobs. There is little
change to such services as Amazon EMR, yet the cloud system
can accommodate many more jobs. In this paper, we first
present a measurement study to show the feasibility and the
quantitative impact of adjusting VM configurations dynamically.
We then model the task and job completion time of big data
applications, which are used for elastic VM adjustment decisions.
We validate our models through experiments. We present Tetris,
an elastic VM strategy based on cloud system that can better
optimize resource utilization to support big data applications.
We further implement a Tetris prototype and comprehensively
evaluate Tetris on a real private cloud platform using Facebook
trace and Wikipedia dataset. We observe that with Tetris, the
cloud system can accommodate 31.3% more jobs.

I. INTRODUCTION

By offering elastic computing and storage resources, cloud

computing is changing the landscape of enterprise’s computing

infrastructure. Cloud providers build data centers with a huge

amount of machines. Using virtualization technique, the cloud

can provide virtual machines (VMs) to the end-users in a pay-

as-you-go manner. From the cloud providers’ point of view,

a critical problem is to allocate its resources (CPU, network,

etc.) effectively so as to accommodate more user jobs.

Recently, there is an increasing number of big data ap-

plications. The de facto standard to process massive data

is MapReduce [1]. For grass root users or non-computing

professionals, the cost for deploying and maintaining a large-

scale dedicated server clusters can be prohibitively high, not to

mention the technical skills involved. They naturally resort to

the cloud systems. As such, the cloud providers see increasing

demands in cloud-based big data applications.

There are several approaches that current cloud platforms

support big data applications. The first representative approach

is Google App Engine-MapReduce [2]. It is a pure Platform

As A Service (PaaS) approach where users directly submit

their MapReduce jobs to the Google App Engine platform.

The advantage of this approach is that the users do not need

to worry about the details, yet they also yield the control of

their applications to the cloud. The second is represented by

Amazon EMR [3] and Microsoft HDInsight [4]. A user first

provisions VMs (Amazon EC2 or Microsoft Azure) from the

cloud provider to construct a cluster. The cloud provider then

deploys a big data processing system such as Hadoop, Spark

[5] on top of the cluster for the user. The user application

is then executed. The users are charged by the consumed

infrastructure with certain additional cost of maintaining the

system. The advantage of this approach is that it gives the

users a full control of the system. Users own their cluster

(i.e., do not need to share with others) and it is easy for the

users to switch their applications to another cloud provider if

needed. We call this kind of approach as infrastructure-based

PaaS (I-PaaS). This approach is widely adopted and it is our

focus in this paper.

Similar to a standard IaaS platform, e.g., Amazon EC2,

in such I-PaaS, each of the VMs is allocated with a fixed

amount of resources (e.g., CPU, memory, disk I/O and network

bandwidth). We observe that when executing MapReduce

jobs, the amount of resources required at different times in

the MapReduce job life cycle differs. Specifically, big data

applications are not only CPU intensive; but other resources,

e.g., the I/Os, may also become bottleneck at different time

period. In such situations, either CPU or the I/O will be

idle; and a fixed VM approach will lead to resource waste.

Therefore, we propose a runtime elastic VM approach where

the cloud can increase or decrease the number of CPUs at

different times. This means that when the CPUs are not fully

utilized (other resources are busy), we decrease the number of

CPUs and when other resources are not fully utilized (CPU

busy), we increase the number of CPUs. With runtime elastic

VM, the cloud guarantees the number of CPU hours for each

user job, yet substantially improve resource utilization of the

cloud. Thus, the cloud system can accommodate more jobs.

We illustrate the elastic VM strategy by a toy example in

Fig. 1. Assume the cloud provider has a 3-CPU machine. Also

assume there are 3 users, each has a MapReduce job. Every

MapReduce job has a set of tasks (more specifically, 4 map

tasks and 1 reduce task; see Section I.A for a brief background

on MapReduce). Assume the processing time of all tasks is

100 seconds. Assume each user rents one VM with two CPUs

for a period of 300 seconds to process the MapReduce job. If

the cloud uses the conventional fixed VM strategy, the result
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Fig. 1: CPUs Adjustment: (a) Fixed Strategy; (b) Elastic Strategy.

is in Fig. 1(a). The cloud can only accommodate two user

jobs and has to reject one. However, if the cloud uses an

elastic VM strategy, the cloud can accommodate all 3 jobs,

a 50% improvement, while still completing every user job in

300 seconds (see Fig. 1(b)).

Note that the objective of the cloud providers is to accom-

modate more jobs, not to run an individual job as fast as pos-

sible. From the above example we can see the intrinsic reason

that an elastic VM strategy accommodates more jobs is that it

can better utilize resources as compared to a fixed VM strategy.

For example, the utilization of CPU 1, CPU 2, and CPU 3 is

66.7%, 83.3%, and 100% in elastic VM strategy and 33.3%,

83.3%, and 50% in fixed VM strategy. In this paper, we fully

explore this idea. We face three challenges: 1) Maintain the

existing cloud services; in other words, the elastic VM scheme

can be incrementally deployed to existing I-PaaS services. The

cloud computing has seen a development for more than a

decade, and many services are in use. We believe that it is

necessary that we are more aware of incremental deployment

as compared to earlier works; 2) A scheme that can maximize

the resource optimization; 3) We need implementation and

evaluation of the prototype system. The implementation is

non-trivial as we target on the cloud provider side; and we

need to establish a cloud environment of our own. In particular,

we need to ensure the infrastructure-level resource supply and

platform-level resource usage consistency: when changing the

configuration of a VM, we need to simultaneously modify the

parallel task number of big data system installed in the MR-

cluster.

The remaining part of the paper is organized as follows. we

first (Section III) demonstrate that dynamically adjusting cloud

resource in runtime is feasible and the overhead is negligible.

And we present a measurement study on the unbalance of the

CPU and I/O utilization in runtime for benchmark applications.

Second (Section IV), we model the big data jobs/tasks and

some key parameters which can indicate resource utilization

efficiency. We further validate our modeling by experiments.

Such modelings assist the resource adjustment decisions in

our system design. Third (Section V), we present the design

of prototype system Tetris1 and cloud resource adjustment

algorithms. Finally (Section VI), we show an implementation

of Tetris and comprehensively evaluate Tetris on a real private

cloud platform using Facebook trace and Wikipedia datasets.

The results show that Tetris can accommodate 31.3% more

jobs than traditional fixed VM strategy.

1We choose “Tetris” as the name of our system, as its basic idea is best
illustrated by the game Tetris: http://en.wikipedia.org/wiki/Tetris
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Fig. 2: Design space of Tetris.

II. RELATED WORK

Resource management is always an important issue for the

cloud system. As both the cloud system and the application

requirements are complex, currently, there is no one clear

winning approach that can be applied in every scenario.

Related studies look into the resource management problems

from different angles. One classification divides the view point

by user side and cloud provider side. Our work belongs to

cloud provider side research and we categorize this in Fig.2.

We first briefly discuss some user side research.

From the view point of user: Users always care about the

performance of job processing and the cost for cloud service,

so many works study jobs scheduling of the MapReduce

systems. In [6][7], scheduling algorithms are proposed for

fast completion time. However, these studies did not consider

improving cloud resource utilization as their objectives. From

the view point of cloud provider: given the user require-

ments, efficiently allocating resources such as CPUs, memo-

ries, I/Os, networking, etc, can make the system accommodate

more users [8].

I) Fixed VM. Currently, cloud providers allocate fixed VM

(Clearly, with full control of the user jobs, the cloud provider

can even mix different user jobs on a single VM). Under such

context, people study:

1) Cluster Configuration. This is also called resource provi-

sioning. To optimize the performance of MapReduce systems

and reduce cost paid for renting resources in the cloud,

AROMA [9] builds model to provision cloud resources for

building the cluster. Herodotou et al. [10] developed Elastisizer

to which users can express their cluster sizing problems as

queries in a declarative fashion. However, none of the above

mentioned studies consider the dynamic cluster with elastic

VMs, only focus on the number of computing nodes or

instance types.

2) VM Placement & Migration. To achieve system load

balancing, or switching servers into sleep mode to conserve

energy, many literatures study on: a) VM placement before

running jobs. For example, Purlieus [11] allocates VMs for

MapReduce cluster in a data-locality manner to optimize

performance of data access in MapReduce system. b) VM

migration across host or even across areas. Shrivastava et

al. [12] developed AppAware for incorporating inter-VM de-

pendencies and the underlying network topology into VM

migration decisions. However, these studies all allocate a fixed

amount of resources to a VM and the resources will not change

during the lifetime of the VM.

3) Networking. Networking, as a shared resource, also at-



tracts a lot of attention. The common objective is to maximize

the number of jobs, and provide certain bandwidth guarantee

for each job. For example, ElasticSwitch [13] investigate the

trade-off between bandwidth guarantee, fairness and network

utilization. In PROTEUS [14], it is observed that the MapRe-

duce applications have different network bandwidth require-

ments at different stage of the job execution. However, these

studies have not considered the requirement characteristics of

computing resource of big data applications.

II) Elastic VM. There exists studies on elastic VM. For

example, Shen et al. [15] presented CloudScale to employ

online resource demand prediction and prediction error han-

dling to achieve adaptive resource allocation. In other words,

they are application and platform agnostic. However, without

prior analysis of application characteristics, online resource

prediction is usually less accurate and less efficient.

In this paper, we present an elastic VM scheme target-

ing big data applications. Owing to the predictability and

periodicity of diverse resource requirement of MapReduce-

like jobs, we show that we are able to predict resource

offline and adjust resource online. In addition, we specifically

try to maintain existing I-PaaS cloud services, so that our

work can be incrementally deployable to I-PaaS services like

Amazon EMR. On the contrary, past Fixed VM schemes and

past Elastic VM schemes targeting on application agnostic

resource management avoid such concern. To the best of our

knowledge, our work is the first to study an elastic VM strategy

based on an I-PaaS cloud system, such as Amazon EMR.

III. THE IDLING CPUS: A MEASUREMENT STUDY

In this section, we show through measurement the resource

unbalance issues for big data jobs. We further investigate the

impact of adjusting VCPUs on resource utilization efficiency.

A. Measurement Setup and VCPU Adjustment Implementation

Our cluster is built on a private cloud. In this cloud,

there are 18 machines connected with a 1Gbps switch. Every

machine has 24 CPU cores and 80GB RAM. We use Xen-

4.1.5 to virtualize the physical machine and build our cloud.

We allocate 1 VM on every physical machine and build a

18-nodes cluster for our experiments. By default, every VM

has one VCPU. In our cluster, we install Hadoop 1.2.1. In our

experiments, we configure 1 map slot for every VCPU (default

in Hadoop). This means that at most 1 map task can run on

one VCPU. The number of reduce task on a VM is set to 1,

also the default value of Hadoop.

We run three typical MapReduce algorithms: PageRank,

Wordcount and Sort. PageRank is widely used in search

engines to calculate the importance of webpages. Wordcount

and Sort are commonly used as benchmark applications to

evaluate the performance of big data processing [16]. The

input data for Wordcount and PageRank is a 75GB document

package from Wikipedia [17]. The input data for Sort is a

30GB dataset generated by a random writer.

We conduct two sets of experiments. First, we fix the

VCPU number in every VM to one; and we measure the
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Fig. 3: CPU utilization and I/O rate in PageRank.
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Fig. 4: CPU utilization and I/O
rate in Wordcount.
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Fig. 5: CPU utilization and I/O
rate in Sort.

resource utilization unbalance in PageRank, Wordcount and

Sort. Second, we dynamically increase the VCPU number and

investigate impact of such change on real systems. We use the

command set “xl” of the Xen-tools to change VCPU number

of a VM in runtime. We observe that the overhead for changing

VCPU number is negligible.

In this paper, we balance the resources utilization by ad-

justing the number of VCPUs. In other words, when the

VCPU becomes the bottleneck and the utilization of another

resource is idle, we increase the VCPU number to increase

the utilization of the other resource; and vice versa. We see

that increasing/decreasing the VCPU number has an equivalent

effect to decreasing/increasing another competing resource. In

our measurement, we observe unbalance usage of CPU and

I/O. The details are as follows.

B. CPU-I/O Usage Unbalance

1) PageRank: We first show the CPU and I/O utilization in

PageRank (see Fig.3). PageRank has three stages: 1) stage 1,

extracts webpage connections from the web page data; this job

is from 0s to 1500s; 2) stage 2, calculates the rank of every

webpage; this job is from 1500s to 3500s; 3) stage 3, sorts

ranks of all webpages from 3500s to 4000s.

In map phase of job 1 (from 0s to 1060s), the CPU is fully

utilized while average I/O rate is only 18.9Mbps. In more

detail, we see that a large amount of map tasks are queued.

This is because the number of parallel map tasks is much

smaller than the total number of map tasks. In reduce phase

(from 1060s to 1500s), average CPU utilization is 18.4% while

average I/O rate is 138.6Mbps. Though the two jobs in the

remaining two stages have different patterns in CPU and I/O

usage, they are also unbalanced in the CPU and I/O usage.

2) Wordcount and Sort: We then conduct a deeper investi-

gation with two benchmark applications: Wordcount and Sort.

Each application has only one MapReduce job.



For Wordcount (see Fig. 4), we see that in map phase, the

CPU is fully utilized while the average I/O rate is 134.1Mbps.

In reduce phase, CPU utilization is 17.2% and I/O rate is

309.3Mbps. These results show that map tasks in Wordcount

are CPU intensive and reduce tasks in Wordcount are I/O

intensive. For Sort (see Fig. 5), we see that the average CPU

utilization in the map phase is 78.3% while the average I/O rate

is 325.8Mbps. In reduce phase, the average CPU utilization is

20.8% and the average I/O rate is 350.4Mbps. Thus, both map

tasks and reduce tasks in Sort are I/O intensive, but in reduce

phase CPU is light-weight.

TABLE I: Average task completion time and average I/O rate of map
phase in Wordcount under different VCPU number.

VCPU number 1 2 4 8

Average task completion time (s) 16.7 17.1 21.3 35.5

Completion time of 8 tasks (s) 133.6 68.4 42.6 35.5

I/O rate (Mbps) 134.1 234.4 380.3 407.4

TABLE II: Average task completion time and average I/O rate of
map phase in Sort under different VCPU number.

VCPU number 1 2 4 8

Average task completion time (s) 6.4 9.7 17.1 40.5

Completion time of 8 tasks (s) 51.2 38.8 34.2 40.5

I/O rate (Mbps) 325.8 452.7 432.5 341.2

C. The Impact of VCPU Number on Resource Utilization

We next see the impact of adjusting the VCPU number in a

VM. The results of Wordcount are shown in Table I. We focus

on the map phase on one VM. To understand these results,

we randomly choose 8 tasks and consider their executions in

the VM. When there is one VCPU, a single task runs 16.7s.

Because one VCPU can handle one task, finishing these 8

tasks needs 8 rounds. This makes the completion time of 8

tasks to be 16.7 × 8 = 133.6s. The I/O rate is 134.1Mbps.

When the VCPU number is increased to 2, 2 tasks can be

run in-parallel. The completion time of one task increases to

17.1s. This slight increase is due to certain contention among

parallel tasks. However, there are only 4 rounds. These 8 tasks

finish in 17.1 × 4 = 68.4s which is only 51.2% of that of 1

VCPU. The I/O rate increases from 134.1Mbps to 234.4Mbps,

an increase of 74.8%. When we increase to 8 VCPUs, we see

that completion time of the 8 tasks reduces to 35.5s; only

26.6% of that of the 1 VCPU situation.

We also see that decreasing completion time of the 8 tasks

is achieved with increasing costs. When the VCPU number

grows, the contention among tasks increases. The average task

completion time increases from 16.7s to 35.5s. As a result,

the cost of improvement increases. For example, when VCPU

number is doubled from 1 to 2, the improvement in completion

time of 8 tasks is 48.8% (from 133.6s to 68.4s). However,

when we double VCPU number from 4 to 8, the improvement

is only 16.7% (from 42.6s to 35.5s).

This is an important observation. Note that our objective

is efficient resource utilization of the cloud system to accom-

modate more jobs, not to complete one MapReduce job as

fast as possible. Thus, it is important to be aware of the cost

of adding VCPUs and choose a proper VCPU number for a

VM. We use efficiency turning point (ETP) to indicate the

resource utilization efficiency when adding VCPUs to a VM.

Intuitively, ETP is the VCPU number where both CPU and I/O

resources in a VM are fully utilized. Apparently, ETP depends

on type of jobs. In Table.I, we see ETP is 4 for map phase of

Wordcount.

We next study Sort, see result in Table II. One important

observation is that the I/O rate in Sort reaches its peak when

the VCPU number is 2. There is even a decrease when the

VCPU number increases from 4 to 8, which means the parallel

map tasks suffer severe competition of I/O bandwidth. This is

because the map tasks in Sort are both CPU and I/O intensive.

When the VCPU number increases, the total I/O bandwidth

required by these tasks reached the limit early. Thus, the ETP

for the map tasks in Sort is 2, less than that of Wordcount.

We see ETP is an important parameter to indicate resource

utilization efficiency and it varies in different scenarios. We

will formally define and model ETP in Section IV.

D. Summary

In summary, we see that: 1)There is a common phenomenon

that cloud resource usage unbalance between CPU and I/O

for MapReduce-like jobs; 2)Increasing the VCPU number

will improve job completion time and resource utilization

efficiency; yet an excessive increase can come at a cost

of the competition on I/O resource, reducing the resource

utilization efficiency; 3)To better utilize resources, the best

VCPU number of a VM can be represented by ETP which

varies in different jobs.

IV. ELASTIC JOB COMPLETION TIME MODELING (EJCT)

In this section, we model the completion time of MapRe-

duce tasks/jobs given elastic VMs. We need to define and

formulate three important parameters: ETP, wave, and Wave

Cutting Point (WCP). Such modeling will assist Tetris re-

source adjustment decisions. We comment that the modeling

is feasible because the MapReduce jobs have fairly standard

task sequences. More importantly, big data analysis (e.g.,

PageRank) usually runs periodically [18]. This means that the

same job (same data size, same function to process the data)

will run again and again. We can thus construct/train model

parameters in the first period.

A. The Task Completion Time Model (TCTM) and ETP

The completion time of a task is determined by the “supply”

and “demand”. The supply is determined by the resources in

a VM. The demand is determined by the resource requirement

of a single task and the number of parallel tasks in the VM. In

what follows, we first model the supply side and the demand

side. Then we present the overall model.

1) The Demand Side: The amount of resources required

by a single task is determined by two factors: 1) the function

(application) of the task; and 2) the size of data processed

by the task. Intuitively, function means what the work is and

decides how many resources needed to process one unit of

data. Input data size decides how much work to do.

We first model the function of the task. It has been observed

that MapReduce jobs have resource signatures [11][14]. A



resource signature means the required I/O bandwidth, memory

and network are relatively fixed given a specified CPU. For

example, in map phase of Wordcount (see Fig.4), when CPU

is fully utilized, I/O rate stays around 134.1Mbps. Thus, we

use resource signatures to represent resource demands of a

function. Formally, let ci be the function executed by task i.

Let Tci be the time for ci to process one unit of data. Let

Si be the set of resources that task i requires. Let o
(k)
ci be

requirement of resource type k for ci.

We next model the size of data processed by the task. For

a MapReduce job, the input data size is same for the tasks in

a phase. In the map phase, the input data are split into blocks

of same size. Before the reduce phase, a MapReduce system

tends to evenly distribute the intermediate data to every reduce

task. In this paper, we assume an even distribution. Formally,

let Di be input data size of task i.

In the default setting of a MapReduce system, the number

of parallel tasks on every VM is the same and this number is

set to be proportional to the VCPU number, e.g., one VCPU

is associated with one map task and one reduce task. As we

change the VCPU numbers, we let the number of parallel tasks

proportional to the VCPU number. Formally, let p be the ratio

of the number of parallel tasks to the number of VCPUs. p is

a constant.

2) The Supply Side: The resources required by the tasks

in a MapReduce job are CPU, memory, I/O bandwidth and

networking bandwidth. Formally, let n be the VM where task

i is executed. Let Un be the number of VCPUs in VM n. Let

O
(k)
n be the capacity of resource type k in VM n.

3) The overall model (TCTM) and ETP: The completion

time of task i on VM n is:

TCT (Di, ci, On, Un) = DiTci

∏

k∈Si

fk(ci, O
(k)
n , Un) (1)

where fk(ci, On, Un) models the increase of task completion

time caused by the mismatch of resource k supply and

demand. Intuitively, when the number of VCPUs increases,

pUn increases and the resource k shared by a single task

decreases. There are two scenarios: 1) when the resource

supply is greater than the combined demands, there is no

increase in task completion time; and 2) otherwise, the task

completion time increases proportionally with demand-supply

mismatch. We formally formulate these two scenarios as:

fk(ci, O
(k)
n , Un) =

⎧

⎨

⎩

1 o
(k)
ci pUn ≤ O

(k)
n

o
(k)
ci

pUn

O
(k)
n

o
(k)
ci pUn > O

(k)
n

(2)

These two scenarios in Eq.2 also indicate an ETP.

Definition 1: The Efficient Turning Point (ETP) of a

resource k for function ci is the maximum VCPU number

where o
(k)
ci pUn ≤ O

(k)
n . Thus, ETP (ci, O

(k)
n ) = ⌊

O(k)
n

o
(k)
ci

p
⌋.

This model means that when the supply of resource k cannot

satisfy the total demand of resource k, the resource k will

become a bottleneck and adding more VCPUs will lead to a

waste of the VCPU resources.

B. The Job Completion Time Model (JCTM), waves, and WCP

1) Waves: The tasks in a MapReduce job run in parallel,

i.e., a subset of tasks start at roughly the same time, process

the same data size, and finish at similar times. Therefore, we

can consider the tasks run in waves[19].

2) JCTM: We first model the completion time of each wave

of map tasks and reduce tasks. The job completion time is then

a summation of all the waves.

We define a resource allocation plan of a MapReduce job

as a sequence of CPU allocations for every VM in a cluster.

Let N be the number of VMs in a cluster for a MapReduce

job. Let L and K be the number of map and reduce tasks in

this job. Let W (M), W (R) be the number of waves in the map

and reduce phases. The resource plan of the map and reduce

phases A(M), A(R) are arrays of N ×W (M) and N ×W (R).

An element U
(M)
nm in A(M) represents the VCPU number

on VM n in the m-th wave in the map phase. An element

U
(R)
nm in A(R) represents the VCPU number on VM n in the

m-th wave in the reduce phase. Let c(M), c(R) be the functions

of the map and reduce phases. Let D(M), D(R) be the input

data sizes of a map and reduce task. The completion time of

a MapReduce job with resource plan A(M), A(R) is:

JCT (A(M)
, A

(R)) =
∑

m∈[1,W (M)]

TCT (D(M)
, c

(M)
, On, U

(M)
nm )

+
∑

r∈[1,W (R)]

TCT (D(R)
, c

(R)
, On, U

(R)
nr )

(3)
3) Wave Cutting Point (WCP): From Eq. 3, we see that the

completion time of a MapReduce job (JCT) is determined by

two factors: 1) the completion times of the tasks, and 2) the

number of waves. Intuitively, there can be a trade-off between

the tasks and waves. If more tasks run in-parallel, the tasks

can finish in fewer number of waves. We define wave cutting

point (WCP) to indicate this.

Definition 2: Let V be the number of tasks in a phase. A

Wave Cutting Point (WCP) is a number of total VCPUs in a

cluster satisfying ⌈ V
WCP

⌉ < ⌈ V
WCP−1⌉.

More specifically, for a WCP, when the VCPU number

increases from WCP-1 to WCP, the number of waves in the

job decreases. For example, suppose a job has 20 map tasks

and every VCPU processes one task at a specified time. If the

total number of VCPU in the cluster is 4, the job finishes in

5 waves. When the VCPU number increases from 4 to 5, the

number of waves decreases from 5 to 4. Thus 5 is a WCP.

Similarly, 10, 20 are also WCPs.

C. Validation

1) Validation Setup: We use same setup used in measure-

ment. For simplicity we mainly analyze Wordcount benchmark

in this section. To validate our models, we initialize parameters

in the TCTM: Di, Tci , Un, On, o
(k)
ci and p by measurement.

We consider three resources: I/O bandwidth, memory and

network bandwidth. Every VM has a fixed amount of I/O

bandwidth, memory and network bandwidth. In this paper,

we focus on the number of VCPUs. Thus, we concentrate on
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validating the prediction accuracy of our model when VCPU

number changes. First, we set the number of VCPU to 1

on every slave. Then we run benchmark applications on the

cluster and measure the task and job completion times. Second,

we change the number of VCPU of every VM from 1 to 5. The

number of parallel tasks on every VM is adjusted accordingly.

In every iteration, we run the same jobs on the cluster.

2) Validation Results: Task Completion Time Model.

When VCPU number increases, parallel task number grows

accordingly. Total I/O bandwidth is fixed for all VMs. As

a result, I/O bandwidth shared by every task decreases. We

compare measured task completion time with results predicted

through our model when I/O bandwidth shared by every map

task changes. Fig.6 shows that when the supply I/O bandwidth

per task is higher than I/O demand, average completion time

of map tasks is stable. However, when supply I/O rate is lower

than the demand, task completion time increases rapidly. More

specifically, when supply I/O rate range from 196.8Mbps to

418.4Mbps, which is larger than the demand (133.6Mbps),

task completion time is about 17.5s both in experiment and

model prediction. In measurement, when shared I/O bandwidth

is 109.6Mbps, less than the demand, task completion time

grows to 19.2s. After that, task completion time rockets to

24.3s when shared I/O bandwidth is 86.4Mbps. We see that

the deviation between experiment result and model prediction

is small, which is always less than 9.5%. These results indicate

that our model can predict task completion times accurately.

Job Completion Time Model. Next, we further validate

the job completion time model (Eq.3). The result is shown in

Fig.7. We see that when VCPU number is increased from 1

to 5, job completion time in experiment decreases from 1303s

to 535s while model-predicted job completion time decreases

from 1249s to 524s. The deviation between experiment result

and model-predicted result is small. The largest deviation is

64s. We can see that two results follow the same trend and

the deviation between them decreases to 2.1% when VCPU

number increases from 1 to 5.

V. TETRIS DESIGN AND ADJUSTMENT ALGORITHMS

We now present the design of Tetris system. We first

introduce the overall architecture of Tetris. We then present

the elastic VM allocation algorithms (eVM). In Section VI,

we present the details for a Tetris prototype implementation.

A. Tetris Architecture

Tetris works for an I-PaaS cloud supporting big data appli-

cations, e.g., Amazon EMR. Such cloud has two components:

1) a cloud administrator, which admits user jobs, creates user

clusters and maintains the big data system on top of the

user clusters; and 2) big data systems, e.g., Hadoop, which

are constructed on top of the clusters. The big data system

monitors the VMs/nodes in the cluster and schedules the tasks

of the user job. The flow of such cloud works as follows. When

a user job arrives, the user specifies a cluster configuration, i.e.,

the requested resources. The I-PaaS cloud determines whether

to admit this job or not. The decision is usually based on the

available resource in the cloud, and other concerns such as

security, etc. If the job is admitted, the cloud administrator

allocates a cluster in the data center, constructs a big data

system on top of the cluster and then the job is executed.

Tetris slightly modifies the flow of the I-PaaS cloud as

follows. When a user job arrives, the user specifies a cluster

configuration, i.e., the requested resources. The I-PaaS cloud

determines whether to admit this job or not. If the job is admit-

ted, the cloud administrator allocates a cluster, constructs the

big data system on top of the cluster. Then Tetris is triggered to

determine a resource allocation plan. The resource allocation

plan specifies the resources needed at each individual time of

the user job life cycle, which can be different. Then the job is

executed. During runtime, the resources are adjusted according

to the resource allocation plan.

The architecture of Tetris is shown in Fig.8. Tetris has two

computing modules which computes the resource allocation

plan; and two interface drivers which are triggered during the

job execution to realize the VCPU adjustment specified in the

resource allocation plan.

The two interface drivers are: 1) an Elastic VM-Cloud

(EVMC) driver; it offers the interfaces for Tetris to change

the number of VCPUs of a VM in the cloud. It also reports

the resource status information, such as the used and idle

CPU numbers on every physical machine, to Tetris; and 2)

a user cluster (UC) driver; it offers the interfaces for Tetris to

notify the big data system scheduler to change the number of

parallel tasks when the VCPU number changes. To assist Tetris

decision making, UC driver reports the job profiling data, such

as job function and job input data size, to Tetris. The resource

utilization information in a VM (e.g. CPU utilization and I/O

bandwidth utilization) is reported to Tetris, too.

The two computing modules are: 1) an EJCT module; EJCT

computes TCTs, JCTs, ETPs, WCPs etc of the user job; and

2) an Elastic Resource Allocation (ERA) module; after a job

is admitted and its cluster is allocated, ERA computes the

resource allocation plan.

In our Tetris/ERA design, ERA computes the resource

allocation plan using JCT, ETP, etc that EJCT computed. This

can be seen as a proactive design. In our experiment, we will

compare Tetris and a reactive design. In the reactive design,

we remove the EJCT module from Tetris. ERA makes resource

adjustment based on monitoring the resource utilization. We

see that our proactive Tetris design has better performance.

We want to comment Tetris from the user’s point of view.

Without Tetris, a user rents a fixed cluster with certain number

of VCPUs and time period (CPU-Time). He then submits the
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job. Amazon EMR usually notifies the user for renewal before

the rental time expires. When the job completes, Amazon

will charge the user according to the infrastructure consumed,

plus around 25% of additional cost for the Hadoop system.

Tetris guarantees that both the total CPU-Time and user job

completion time are no worse than the fixed VM strategy.

Thus, the cloud provider can do the same as usual.

B. Tetris Elastic VM Adjustment Algorithms (eVM)

When a job is admitted, ERA module call eVM algorithm

to compute the resource allocation plan for this job. The

objective is to accommodate as many jobs as possible with

the constraints of guaranteeing the job completion time and

the total CPU-Time the user registered for the cluster.

To maximally accommodate jobs, we try to execute each job

efficiently. For each incoming job, we study two trade-offs.

First, there is unbalance usage for different types of re-

sources. When unbalance occurs, at least one type of resource

is wasted. Recall that the ETP for a type of resource is

the VCPU number that can make this type of resource fully

utilized. Though there are ETPs for I/O, memory, network

bandwidth, we only need to consider the first type of resource

that introduces resource utilization unbalance. We develop our

first algorithm eVM-base() which sets the VCPU number to

1) the ETP, the closer the better; and 2) the limit of total CPU

number of the physical machines. We do not increase beyond

the limit of the physical machines, as this will need to migrate

memory etc.

Second, recall that the tasks of a MapReduce job run in

waves. Setting the VCPU number according to the ETP only

may introduce additional waves for very few tasks. We found

that these “lingering” tasks, together with the limit of physical

available CPU number of the machines may reject jobs that

will be accommodated otherwise. To this end, we develop our

Elastic VM Adjustment algorithm eVM() where we slightly

compromise ETP according to WCPs. Recall that WCPs are

the VCPU numbers that cut the waves. We increase ETP to

1) the closest WCP; and 2) JCT (the job completion time)

decreases.

To guarantee the CPU-Time, in both eVM-base() and

eVM(), we compute in each time slot through EJCT the total

VCPU-Time needed to complete the remaining tasks. If this is

less than the user VCPU-Time, we still can increase/decrease

Algorithm 1 eVM-base() with ETP

Input: 〈H,Cini〉, Rini, ETP , L, CTuser .
Output: 〈H,C〉, R.

1: C = Cini; R = Rini;
2: Compute current job completion time JCT cur ;
3: for ∀t ∈ [0 . . . JCT cur] do

4: for ∀n ∈ [1 . . . N ] do

5: // ETP constraint and JCT guarantee.
6: if cn < ETP then

7: // physical CPU number constraint.
8: c = min(ETP − cn, Rhn

);
9: Compute CT ela after adding c VCPUs to VMn;

10: // user VCPU time constraint.
11: if CT ela < CTuser then

12: cn = cn + c; Rhn
= Rhn

− c;

13: Compute JCTnew after adjusting VCPUs;
14: JCT cur = JCTnew; ctotal =

∑
n∈[1...N ] cn;

15: // user remaining VCPU time.
16: CTuser = CTuser − ctotal × interval;

17: return;

Algorithm 2 eVM() with ETP and WCP

Input: 〈H,Cini〉, Rini, ETP , L, CTuser .
Output: 〈H,C〉, R.

1: (C,R) = eVM-base(H,Cini,Rini, ETP,L,CTuser);
2: Compute current job completion time JCT cur ;
3: for ∀t ∈ [0 . . . JCT cur] do

4: ctotal =
∑

n∈[1...N ] cn;

5: for ∀n ∈ [1 . . . N ] do

6: // no idle CPUs.
7: if Rhn

== 0 then continue;

8: // ETP constraint
9: for ∀i ∈ [1 . . . ETP ] do

10: // physical CPU number constraint.
11: if i > Rhn

then break;
12: // cut waves.
13: if ⌈L/ctotal⌉ > ⌈L/(ctotal +min(Rhn

, i))⌉ then

14: Compute JCTnew after adding i VCPUs to VMn;
15: // JCT guarantee.
16: if JCT cur > JCTnew then

17: Compute CT ela after adding i VCPUs to VMn;
18: // user VCPU time constraint.
19: if CT ela < CTuser then

20: cn = cn + i; Rhn
= Rhn

− i;
21: JCT cur = JCTnew; ctotal = ctotal + i;
22: break;

23: // user remaining VCPU time.
24: CTuser = CTuser − ctotal × interval;

25: return;

the VCPU number; otherwise, we complete the remaining

tasks using Fixed-VM. Thus, the user job will not exceed the

VCPU-Time that the user ordered.

C. Algorithm Details

We now present the algorithm details. Both eVM-base and

eVM are greedy-based. They all output a resource allocation

plan, i.e., the VCPU number in each time slot (here we use

interval to denote the time slot).

We first present eVM-base. It computes the VCPU number

iteratively for each time slot. There are 3 constraints to

determine the VCPU number (or whether we should increase

or decrease the VCPU number as compared to the Fixed-VM

strategy in that time slot): 1) the ETP, the closer the better;

2) the limit of the physical CPU number. Note that we do



not increase beyond the physical limit as this will need to

migrate memory etc; and 3) in each iteration, we compute

through EJCT the total VCPU time needed to complete the

remaining tasks. If this is less than the user VCPU time, we

still can increase/decrease the VCPU number; otherwise, we

complete the remaining tasks using Fixed-VM. The philosophy

behinds this is that we have to complete the user job without

exceeding the VCPU time that the user purchases. In summary,

we increase/decrease the VCPU number to the closest of ETP

where constraints 2) and 3) are not violated.

We can see that our algorithm will not violate the VCPU

time. In each iteration, we can only improve the ETP. The job

completion time can only improve and thus also guaranteed.

eVM is developed similarly where we have an additional

adjustment for ETP to the closest WCP where JCT decreases.

Formally, the pseudo codes of eVM-base and eVM are showed

in Algorithm 1&2.

Notations: Assume the VMs of the job is placed on

a cluster contains N physical machines and let H =
{h1, h2, . . . , hN} be the id array of the physical machines.

Let C = {c1, c2, . . . , cN} be VCPU numbers allocated to

the VMs. Let R = {R1, R2, . . . , RN} be the available CPU

numbers in each physical machine, i.e., that is possible for the

elastic strategy to increase the VCPU number. Let Cini be the

initial allocated VCPU array for the VMs that scheduled to

process the job. And let Rini be the initial remaining VCPUs

array for each physical machines. For an arrival job, we can

compute the ETP of the code, the number of tasks L and the

parameters used in Eq.3 for computing JCTM. Let CTuser be

the user VCPU time and CT ela be the total VCPU time that

needed to complete the remaining tasks.

VI. IMPLEMENTATION AND EXPERIMENT

A. Implementation

We develop a prototype of Tetris. Tetris is used for an I-

PaaS cloud provider. Tetris needs to change the configuration

of a VM and modify the big data system installed in the

cluster. Current public available cloud such as Amazon EMR,

Microsoft HDInsight do not offer such authorities, yet. There-

fore, before we develop Tetris, we first implement a prototype

cloud system similar to Amazon EMR. Our cloud system is

developed based on Xen, a common virtualization platform

used by Amazon, Rackspace, etc. For the big data system

on top of the user clusters, we use Hadoop 1.2.1, which is

the same version adopted by Amazon EMR. Hadoop has two

types of nodes: master and slave. One VM of the cluster is

configured as the master node and the remaining VMs in the

cluster are configured as the slave nodes. The master node

monitors slave nodes and controls the tasks running on slave

nodes. Slave nodes process tasks.

We then implement Tetris. The implementation framework

is shown in Fig. 9. We develop the EVMC and UC drivers for

Hadoop and Xen. For the EVMC driver, we register a handle

to the cloud administrator so that Tetris is informed when the

resource utilization changes, e.g., when a cluster is released.

When Tetris changes the VCPU number of a VM, this change
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Fig. 9: Implementation of Tetris

is realized by invoking the Xen APIs on the Xen hypervisor

where the VM allocated. For the UC driver, we monitor and

control Hadoop through the master node. We install a monitor

script on every slave node. Thus a master node can collect the

resource utilization on every slave node. The UC driver fetches

these information from the master node directly. Note that we

need to inform Hadoop to increase/decrease in-parallel tasks

running on a VM when the VCPU number of a VM changes.

The default scheduler of Hadoop, however, assumes that all

slave nodes have the same CPU resources. We thus develop a

scheduler for the Hadoop system. In our scheduler, we add a

list to record the current VCPU numbers on every slave node.

Different scheduling logic can be used.

B. Experiment Setup

Cloud environment. In the experiment, we use same cloud

environment setting as in the measurement. Different from the

measurement where we run only one cluster in the cloud for

detail investigation, Tetris runs multiple jobs simultaneously.

Thus, we run multiple clusters in our evaluation.

Workloads. We study two types of jobs, Wordcount and

Sort. The workload injected for our system is determined

by the job size and the real data. The job size is based on

Facebook trace [20] in which many jobs are small (less than

2 map tasks) yet there are big jobs with more than 500 map

tasks. The real input data of Wordcount are from Wikipedia

and the input data of Sort are generated by a random writer.

To have a fair comparison, we develop a job set generator

to create the same sequence of jobs for every algorithm. We

generated 150 jobs from Facebook trace. The distribution of

the job inter-arrival time was exponential with a mean of 10

s. The experiment period is 1500s.

Comparison strategy. We compare performance of three

strategies: eVM, eVM-base and Fixed-VM (current strategy

of Amazon EMR). In Fixed-VM, the configurations of VMs

do not change once they are initialized.

C. Experiment Results

1) An overview: Throughput. Fig.10 show the throughputs

of three algorithms. X-axis is the time after the submission of

the first job of the workload. Y-axis is number of admitted jobs.

We can see that eVM-base and eVM algorithm have greater

throughputs than Fixed-VM. Fixed-VM only admits 53.3%

jobs at the time of 1500s. eVM-base and eVM admit 64% and

70% jobs respectively. Compared to Fixed-VM, eVM-base has

an 18.8% improvement, and eVM has a 31.3% improvement.
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Comparing the results between WordCount and Sort, we

observe that the improvement in Sort is greater than that of

Wordcount. In our measurement section, however, we see Sort

has greater I/O than Wordcount and the ETP of the map tasks

in Sort is less than the ETP of the map tasks in Wordcount.

In other words, when increasing the VCPUs, the Sort jobs

gain less benefit than the Wordcount jobs. After a detailed

investigation, we found the high improvement of Sort comes

from reclaiming VCPUs in the reduce phase. The reduce phase

in Sort occupies 37% of whole job processing time while the

reduce phase in Wordcount only occupies 21%. This means

that if a Wordcount job and a Sort job have the same JCT,

eVM can release VCPUs earlier in Sort. Thus, more jobs can

be admitted in the Sort workload. This observation reveals

that the improvement of eVM comes from not only increasing

VCPUs when there are idle VCPUs outside the cluster but

also from releasing VCPUs in the cluster when workload in

the cluster is low.

Job completion time guarantee. We then study the job

completion time. From user’s point of view, the user job

completion time under elastic VM strategy should not be

greater than the completion time under the default Fixed-VM

strategy. For every job executed in eVM we compute the ratios

of JCT in eVM divided by JCT in Fixed-VM. Note that this

ratio should always less than 100%. Fig.11 shows the CDF

of the ratios. We see that in both eVM and eVM-base, every

job has a JCT less than the JCT in Fixed-VM. This means the

completion time of all jobs are guaranteed. Moreover, we see

86% jobs in eVM finish with 60% of JCT in Fixed-VM.

User VCPU time constraint. In an I-PaaS cloud, the

users rent VCPU time from the cloud providers. Tetris should

guarantee that the VCPU time under elastic strategies is no

greater than the Fixed-VM strategy, so as to avoid over

charging the users. Fig.12 shows that eVM and eVM-base

can guarantee all the jobs can be finished in VCPU times.

In summary, Tetris not only is good in the total number

of jobs accepted (throughput), but also guarantees the job

completion time and VCPU time. The reason that Tetris excels

in all fronts is because the resource utilization is better. And

we now look into the VCPU utilization.

VCPU utilization. VCPU utilization is the percentage of

allocated VCPU number in total VCPU number. Fig.13 show

the VCPU utilization during job processing. We see that after

500s, the VCPU utilization of eVM is over 91%, eVM-base is

around 87%, and Fixed-VM is around 75%. As compared to

Fixed-VM, eVM and eVM-base increase the VCPU utilization

by 16% and 12% on average.

Tetris in micro view. We now look one step further into

Tetris VCPU utilization. We look at Tetris in micro view. To

facilitate this, we conduct a finer-controlled experiment. We

construct a three-job workload as follows: job 1 has 400 map

tasks and 2 reduce tasks; job 2 has 300 map tasks and 2 reduce

tasks; and job 3 has 100 map tasks and no reduce tasks. Job

1 is submitted at time 0; job 2 is submitted after the reduce

phase of job 1 starts, and job 3 is submitted after job 1 finishes.

Fig.15 shows a timeline of the experiment for both Tetris

and Fixed-VM. Using Tetris, all three jobs are admitted and

finished and using Fixed-VM, job 2 is rejected. Our micro

view shows clearly why and how this happens. Using Tetris,

the VCPU number of job 1 increased in the map phase

(see a comparison of Fixed-VM) and fully utilize all VCPU

resources (close to 100%). At time 705s, the map tasks of

job 1 finishes and the VCPU utilization of job 1 decreases.

Tetris dynamically releases 80% of the VCPU resources to the

cloud. At the same time, job 2 is submitted. Job 2 is accepted

and it uses the released VCPU resources of job 1. Job 1

finishes at 918s. From 918s to 1056s, job 2 occupies all VCPU

resources. Map phase of job 2 finishes at 1067s. And 70%

VCPU resources are reclaimed. At 1070s, job 3 is submitted.

Job 3 uses the 70% VCPU resources which released by job

2. Note that although we fine-controlled the job submissions

in this experiment for illustration, all elastic VM adjustments

are done by Tetris.

As a comparison, for the Fixed-VM strategy, even that the

VCPU is not fully utilized, the cloud cannot adapt to this. No

matter how we control job submissions, the Fixed-VM strategy

always fails to squeeze all 3 jobs in the cloud.

2) The Impact of VM placement: Recall that when a job

is admitted, the cloud provider will construct the cluster for

this job. Tetris is then executed. Clearly, the performance of

Tetris depends on the VM placement strategy. We study two

typical VM placement strategies: load balancing and server

consolidation. In a load balancing strategy, the objective of

the cloud is to avoid resources competition. Thus, the cloud

places new VMs in a physical machine that has the least load.

In the server consolidation strategy, the objective of the cloud

is to spare machines, e.g., for power conservation, etc. Thus,

the cloud places new VMs in the physical machine which has

high load. Fig.10 is under load balancing strategy while Fig.14

is under server consolidation strategy.

Comparing Fig.10 with Fig.14, we see that eVM admits

31.3% more jobs than Fixed-VM under load balancing strategy

and admits 20% more jobs under server consolidation strategy.

Our elastic algorithms perform better under the load balancing

strategy. The reason is that under the server consolidation

strategy, VMs are crowded in physical machines, leaving less

adjustment opportunities for Tetris. However, we still see

that eVM and eVM-base outperform Fixed-VM in such a
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Fig. 15: Stacked chart showing the percent of occupation of VCPUs in one server in the
cluster given to each job as a function of time between Tetris and Fixed-VM.
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Fig. 16: Impact of memory.
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constrained situation.

3) The Impact of Memory and Network Bandwidth: We

now decrease memory and network bandwidth from their

default value to evaluate the performance of Tetris.

Impact of Memory. We set the memory of each node as

2GB (default) and 1GB (starting to become a bottleneck).

Fig.16 shows that when the memory decreases from 2GB

to 1GB, both eVM and Fixed-VM suffer from performance

degradation. eVM admits 14.3% less jobs while Fixed-VM

admits 12.5% less jobs. However, eVM outperforms Fixed-

VM consistently.

Impact of Network bandwidth. We set the bandwidth of

each node as 100Mbps and 200Mbps. Fig.17 shows that when

the bandwidth decreases from 200Mbps to 100Mbps, eVM

admits 23.5% less jobs while Fixed-VM admits 18.8% less

jobs. Yet, eVM outperforms Fixed-VM consistently.

VII. CONCLUSION

In this paper, by measurement we observed that there is

a common phenomenon that cloud resource usage unbalance

between CPU and I/O for MapReduce-like jobs running in an

I-PaaS platform such as Amazon EMR. Then we proposed and

demonstrated an elastic VM strategy to optimize the resource

utilization unbalance problem effectively. Note that when the

unbalanced utilization of different types of resources occurs,

at least one type of resource is wasted/idle. To best explore

this idea, we presented a design and implementation of Tetris

with incremental deployment. We showed by comprehensive

experiments that Tetris can better utilize resources and conse-

quently accommodate more jobs.
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