

COMP2421 – COMPUTER ORGANZATION

1

Lab 3

Objectives: This lab shows you some basic techniques and syntax to write a MIPS program.

Syntax includes system calls, load address instruction, load integer instruction, and arithmetic

instructions (e.g. addition, subtraction, etc).

MIPS Programming – Part I

Recall the one we executed in the first lab, the ten lines “Hello World” MIPS program. For the ten

program statements, they are:

 .data

msg: .asciiz "Hello World"

 .extern foobar 4

 .text

 .globl main

main: li $v0, 4 # syscall 4 (print_str)

 la $a0, msg # argument: string

 syscall # print the string

 lw $t1, foobar

 jr $ra # retrun to caller

In this example, we have a string (char array) stored in “msg”. Then, we use a syscall (system

call or kernel call) to instruct the simulator to print out the message stored in “msg”. First of all,

let’s take a look at the program structure.

Program Structure

Similar to most high level programming languages, MIPS have to declare variable names in the

“.data” (assembler directive) section. In addition, program codes (instructions) are placed in

“.text” (another assembler directive) section. You can place your comments in a program at

anywhere by following the symbol “#” in a line. Below is a MIPS program template.

Comment giving name of program and description of function

File Name: Template.s

Description: Bare-bones outline of MIPS assembly language program

Author: Put your name here

 .data # variable declarations follow this line

 # ...

 .text # instructions follow this line

main: # indicates start of code (first instruction to execute)

 # ...

End of program, leave a blank line afterwards to make SPIM happy.

Directive

A directive is a message to the assembler that tells the assembler something it needs to know in

order to carry out the assembly process. This includes noting where the data is declared or the code

is defined. (Note: Assembler directives are not executable statements.)

COMP2421 – COMPUTER ORGANZATION

2

Some common assembler directives you should know.

Syntax Description

.data <addr>

The following data items should be stored in the data segment. If

the optional argument addr is present, the items are stored

beginning at address addr.

.asciiz str Store the string in memory and null-terminate it.

.text <addr>

The next items are put in the user text segment. In SPIM, these

items may only be instructions or words (see

the .word directive below). If the optional argument addr is

present, the items are stored beginning at address addr.

.globl sym

Declare that symbol sym is global and can be referenced from

other files.

For example, .globl main means that the identifier main

will be used outside of this source file (i.e. used globally) as the

label of a particular location in main memory.

.space n
Allocate n bytes of space in the current segment (which must be

the data segment in SPIM).

.word w1,..., wn

Store the n 32-bit quantities in successive memory words. SPIM

does not distinguish various parts of the data segment

(.data, .rdata and .sdata).

.byte b1,..., bn Store the n values in successive bytes of memory.

.extern sym size

Declare that the datum stored at sym is size bytes large and is a

global symbol. This directive enables the assembler to store the

datum in a portion of the data segment that is efficiently accessed

via register $gp.

Besides, those directives, there are “li”, “la”, “lw” and “jr” in the program. All these are the

instructions (executable codes) of MIPS.

Data Types / Sizes

byte 8-bit integer

halfword 16-bit integer

word 32-bit integer

float 32-bit floating-point number

double 64-bit floating-point number

COMP2421 – COMPUTER ORGANZATION

3

CPU Registers

Register Name Register Number Register Usage

$zero $0 Hardware set to 0

$at $1
Assembler temporary (reserved by the

assembler)

$v0 - $v1 $2 - $3 Function result (low/high)

$a0 - $a3 $4 - $7

Argument Registers – First four parameters

for subroutine. Not preserved across

procedure calls.

$t0 - $t7 $8 - $15

Temporary registers – Caller saved if needed.

Subroutines can use without saving. Not

preserved across procedure calls.

$s0 - $s7 $16 - $23

Saved registers – Callee saved. A

subrountine using one of these must save

original and restore it before exiting.

Preserved across procedure calls.

$t8 - $t9 $24 - $25
Temporary registers. (These are in addition

to $t0 - $t7 above.)

$k0 - $k1 $26 - $27
Reserved for OS kernel (use by interrupt/trap

handler)

$gp $28

Global pointer – points to the middle of the

64K block of memory in the static data

segment.

$sp $29
Stack pointer – points to last location on the

stack.

$fp $30
Frame pointer – saved value. Preserved

across procedure calls

$ra $31 Return address

COMP2421 – COMPUTER ORGANZATION

4

Quick Review

Basic Structure:

 .data

 .text

 .data

str: .asciiz "Hello\n"

 .globl main # Global variable and the entry point of prog.

 .text

main:

 la $a0, str #load string address into $a0

 #and I/O code into $v0

 li $v0, 4 # Service No 4 to $v0

 syscall # execute the syscall to perform

 # input/output via the console

 li $v0, 10 # syscall code 10 for terminating the program

 syscall

Declare variables here

Write the program body

(instructions) here

Comments: Start with a sharp sign (#)

ID (Identifier): a sequence of char, underbar(“_”), and dots that does not begin with a

number. Labels: put at the beginning of a line followed by a

colon
Directives

DATA

TEXT

COMP2421 – COMPUTER ORGANZATION

5

System Calls

System Calls: Input/output integer, float, double, and string by syscall. For example, the

following statement “move” a data value from one register to another one and then use a system call

to print out the value.

move $a0, $t0 # move value from $t0 to $a0

li $v0, 1 # use a system call to print out integer

syscall # print the value on console

Service Code in $v0 Arguments Results

print_int 1 $a0 = integer to be printed

print_float 2 $f12 = float to be printed

print_double 3 $f12 = double to be printed

print_strint 4 $a0 = address of string in memory

read_int 5 integer returned in $v0

read_float 6 float returned in $v0

read_double 7 double returned in $v0

read_string 8

$a0 = memory address of string

input buffer

$a1 = length of string buffer (n)

sbrk 9 $a0 = amount address in $v0

exit 10

In most cases, we simply use those print / read (output / input) calls as well as the exit call. For

“sbrk”, it is used in Unix or Unix-like machines to management memory (malloc) dynamically in

the old days.

COMP2421 – COMPUTER ORGANZATION

6

Load / Store Instructions

Instruction Syntax Description

lw register_destination, RAM_source Load word or copy word (4 bytes) at source

RAM location to destination register.

lb register_destination, RAM_source
Load word or copy byte at source RAM

location to low-order byte of destination

register.

li register_destination, value
Load immediate value into destination

register.

sw register_source, RAM_destination
Store word (4 bytes) in source register

location to RAM destination.

sb register_source, RAM_destination
Store byte (low-order) in source register

location to RAM destination.

Arithmetic Instructions

Instruction Syntax Description

add $t0, $t1, $t2
$t0 = $t1 + $t2;

add as signed integers

sub $t0, $t1, $t2
$t0 = $t1 - $t2;

substract as signed integers

addi $t0, $t1, 5
$t0 = $t1 + 5;

add immediate

addu $t0, $t1, $t2
$t0 = $t1 + $t2;

add as unsigned integers

subu $t0, $t1, $t2
$t0 = $t1 - $t2;

substract as unsigned integers

mult $t1, $t2

(Hi,Lo) = $t1 * $t2;

multiply 32-bit quantities in $t1 and $t2, and store 64-bit

result in special registers Lo and Hi

div $t1, $t2
Lo = $t1 / $t2; (integer quotient)

Hi = $t1 mod $t2; (remainder)

mfhi $t0
$t0 = Hi

move quantity in special register Hi to $t0

mflo $t0
$t0 = Lo

move quantity in special register Lo to $t0

move $t1, $t2 # $t1 = $t2

COMP2421 – COMPUTER ORGANZATION

7

Example

BMI Calculator

This program returns you the Body Mass Index (BMI) figures

Procedures:

1. Print message: "Enter Weight (whole pound): "

2. Read the input integer from the console

3. Print message: "Enter Height (whole inch): "

4. Read the input integer from the console

5. Calculate the BMI

6. Show the result on Console: "Your BMI is: "

 .data

str1: .asciiz "Enter Weight (whole pound): "

str2: .asciiz "Enter Height (whole inch): "

str3: .asciiz "Your BMI is: "

 .globl main # Global variable: the entry point of the prog.

 .text

main:

 #

 #Step 1: Print the prompt message using system call 4

 #

 la $a0, str1 # load string address into $a0 and I/O code into $v0

 li $v0, 4

 syscall # print the message on console

 #

 #Step 2: Read the integer from the console using system call 5

 #

 li $v0, 5

 syscall

 move $s0, $v0

 #

 #Step 3: Repeat Step 1 and Step to read in "Height"

 #

 la $a0, str2 # load string address into $a0 and I/O code into $v0

 li $v0, 4

 syscall # print the message on console

 li $v0, 5

 syscall

 move $s1, $v0

 #

 #Step 4: Calculate the BMI (mass * 703) / (height)^2

 #

 li $t0, 703

 mult $t0, $s0

 mflo $t1

 mult $s1, $s1

 mflo $t2

 div $t1, $t2

COMP2421 – COMPUTER ORGANZATION

8

 mflo $s2

 #

 #Step 5: Print the result message using system call 4

 #

 la $a0, str3 # load string address into $a0 and I/O code into $v0

 li $v0, 4

 syscall # print the message on console

 #

 #Step 6: Print the BMI

 #

 move $a0, $s2

 li $v0, 1

 syscall

 li $v0, 10 # syscall code 10 for terminating the program

 syscall

Exercise

Based on the example program above, rewrite one for converting the temperature in Celsius (C) to

Fahrenheit (F).

Equation for the conversion: F = (C * (9 / 5)) + 32

- End -

