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1 Principles of Binary Arithmetic 
Cyclic codes, finite fields of order 2k and other signal processing topics in EE521 use 
binary arithmetic to define operations with signal bits and codeword bits.  The base 
operations are addition, subtraction, multiplication, and division.  Arithmetic is done 
modulo 2, and the results of addition, subtraction, and multiplication simply use ordinary 
integer arithmetic and take the result modulo 2.  The operations are summarized as 
follows. 

• Binary addition of two bits results in the exclusive logical OR of the two bits, 
usually summarized by the mneumonic XOR.  The result of an XOR is a zero if 
the two bits are the same, and a one if the two bits are different. 

• Binary subtraction is the same as binary addition because, modulo 2, -1 is the 
same as +1. 

• Binary multiplication is the same as a logical AND of the two bits.  The result of 
an AND is a one if both the bits are ones; the result is zero if either or both of the 
input bits is zero. 

• Division in binary arithmetic is rarely used, but it is defined.  Division of a 
numerator bit by one results in the numerator bit as the quotient, whether it is zero 
or one.  Division by zero is not defined. 
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2 Principles of binary polynomials 
Vectors of bits such as message words or codewords are represented by binary 
polynomials in cyclic codes and in finite fields of order 2k.  The coefficients of the 
polynomials are the bits, and the power of the independent variable is used to denote the 
position of the bit in the word.  The purpose of using the polynomial representation is to 
define operations on the words using conventional polynomial arithmetic – polynomial 
addition, subtraction, multiplication and division – except that the coefficients are taken 
modulo 2 in the completed operations.  Note that subtraction of polynomials is the same 
as addition in binary arithmetic.  This can be used to simplify the operations of division 
of polynomials, as we will show below. 

3 Division of Binary Polynomials 

3.1 The Fundamental Definition of Division 
Division of binary polynomials is based on the fundamental definition of division, which 
we state here:  a number n divided by a denominator d is characterized by a quotient q 
and a remainder r which are related by 

 n rq
d d
= +  (3.1) 

or, multiplying both sides by the denominator d, 

 n d q r= ⋅ +  (3.2) 

where the remainder r is indivisible by the denominator d.  For the purposes of 
polynomial division, this means that the order of the remainder polynomial r is less than 
that of the denominator polynomial d. 

3.2 Division of Polynomials in General 
Long division of polynomials uses (3.2) in recursively to reduce the order of the 
numerator by one.  Each such operation produces a “remainder” which is of order less 
than that of the numerator. 

We illustrate this process by writing the numerator and denominator polynomials 
explicitly, 
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 (3.3) 

If the order K of the numerator polynomial is less than the order N of the denominator 
polynomial, then the quotient is zero and the remainder is the numerator polynomial; this 



EE521 Analog and Digital Communications April 20, 2006 

 Page 3 of 5 

is a trivial case so we assume here that the order of the numerator exceeds that of the 
denominator. 

We can define a step that produces a form similar to that of (3.2) and leaves us with a 
division operation in which the order of the numerator is reduced.  We multiply the 
denominator by ( ) K N

K Nn d x −⋅  and subtract this product from the numerator: 
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Now, we note that 
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 (3.5) 

which is of the same form as (3.2).  We have identified the highest-order term of q(x) and 
reduced the order of the numerator.  If the order of n1(x) is less than that of d(x), we are 
done, otherwise we repeat the operation with n1(x) as the numerator. 

We pose operation as a recursion.  To initialize, we set 
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Each step reduces the order of the numerator and adds a term to the quotient: 
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The recursion stops when the order of ni(x) is less than that of the denominator; the 
remainder is this polynomial. 

3.3 Division of Polynomials in Binary Arithmetic 
Since binary arithmetic is far simpler than that for real numbers or ordinary integers, we 
can simplify the polynomial division process.  We recognize that dN is always 1 and that 
subtraction is the same as addition.  We initialize using (3.6).  At each step, we examine 
the highest order bit of ni(x), ni,K-i, and, if it is 1, we perform the operation 
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If the bit ni,K-i is zero, we do NOT perform (3.8) and simply go to the next i.  Note that the 
polynomial coefficients are taken modulo 2 after addition in (3.8). 

3.4 Example Using a Spreadsheet 
This recursion is very simple, and can be implemented with any spreadsheet.  An Excel 
implementation, with example, is included below. 
Binary Polynomial Division

x^0 x^1 x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 x^11 x^12 x^13 x^14 x^15 x^16
Denominator polynomial

1 0 1 0 1 0 0 1 0 1 1
Numerator Polynomial

1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1

Division Process Yes/No Highe
Numerator 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1

x^6*d 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1
x^5*d 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1
x^4*d 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 1 0 0 1 1 0 0 1 1 1
x^3*d 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 0 1 1 0 0 1 0 1 1 0
x^2*d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum 1 0 1 0 1 1 0 0 1 0 1 1
x^1*d 1 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 1 1 1 1 0 0 0 0 0 0
x^0*d 0 0 0 0 0 0 0 0 0 0 0 0
Sum 1 1 1 1 1 0 0 0 0 0

Quotient 0 1 0 1 1 1 1

Remainder 1 1 1 1 1 0 0 0 0 0  
Figure 1 Binary Polynomial Division with a Spreadsheet 

 

Note that the columns headers are the powers of x in the polynomials.  The original 
numerator polynomial is bordered by a double line, and the denominator polynomial is 
bordered by a single line. 

In the table of values headed by Division Process, we begin with the numerator.  This 
is equivalent to the initialization given as (3.6).  We then multiply the denominator by xN-

K (in this example, N is 16 and K is 10, so we multiply by x6.  This shifts the bits of the 
denominator so that the most significant bit falls below the most significant bit of the 
numerator. 

The most significant bit of the numerator now determines whether or not we execute 
(3.8) at this iteration.  This bit is copied to the column labeled Yes/No and also to the 
most significant bit of the Quotient, the x6 term, near the bottom of the sheet. 

At each iteration, the denominator is added to xK-N-i using binary arithmetic.  If the most 
significant bit of the denominator as carried to the Yes/No column is zero, as is the case 
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in two of the rows of the example, the corresponding entries for the bits of the 
denominator are made zero by multiplying them by this bit. 

3.5 Manual Computation 
The execution of polynomial division with binary arithmetic is so simple that it can be 
done by hand quickly, and the process is not particularly error-prone.  In manual 
execution of (3.8), you should follow the general format set in the spreadsheet example: 

• Use column headings of x0, x1, x2, etc. and tabulate all your polynomial 
coefficients under the corresponding column heading.  This eliminates confusion 
as to the bit position in succeeding computations, which is critical to keeping hand 
computation simple. 

• State the numerator and denominator polynomials in terms of the coefficients as 
bits, using 0 and 1. 

• Re-state the denominator polynomial, multiplied by the appropriate power of x 
and placed in the corresponding columns for each coefficient. 

• Use the most significant bit of the numerator at each step to determine the 
corresponding bit of the quotient, and to determine whether (3.8) is to be 
executed.  Make this bit explicit at the next row, as with the Yes/No column in 
the spreadsheet example, as well as in the quotient.  This means that all elements 
of a particular instance of (3.8) are right on the rows where they are needed to 
understand and execute each row. 

 

When you are done, you might check your work by executing (3.2) in binary arithmetic. 

 

 

 


