
EE521 Analog and Digital Communications April 20, 2006

 Page 1 of 5

Binary Polynomial Division

Instructor: James K Beard, PhD

Email:. jkbeard@temple.edu, jkbeard@comcast.net

Web Page: http://temple.jkbeard.com

Table of Contents
1 Principles of Binary Arithmetic .. 1

2 Principles of binary polynomials .. 2

3 Division of Binary Polynomials.. 2

3.1 The Fundamental Definition of Division.. 2

3.2 Division of Polynomials in General.. 2

3.3 Division of Polynomials in Binary Arithmetic ... 3

1 Principles of Binary Arithmetic
Cyclic codes, finite fields of order 2k and other signal processing topics in EE521 use
binary arithmetic to define operations with signal bits and codeword bits. The base
operations are addition, subtraction, multiplication, and division. Arithmetic is done
modulo 2, and the results of addition, subtraction, and multiplication simply use ordinary
integer arithmetic and take the result modulo 2. The operations are summarized as
follows.

• Binary addition of two bits results in the exclusive logical OR of the two bits,
usually summarized by the mneumonic XOR. The result of an XOR is a zero if
the two bits are the same, and a one if the two bits are different.

• Binary subtraction is the same as binary addition because, modulo 2, -1 is the
same as +1.

• Binary multiplication is the same as a logical AND of the two bits. The result of
an AND is a one if both the bits are ones; the result is zero if either or both of the
input bits is zero.

• Division in binary arithmetic is rarely used, but it is defined. Division of a
numerator bit by one results in the numerator bit as the quotient, whether it is zero
or one. Division by zero is not defined.

EE521 Analog and Digital Communications April 20, 2006

 Page 2 of 5

2 Principles of binary polynomials
Vectors of bits such as message words or codewords are represented by binary
polynomials in cyclic codes and in finite fields of order 2k. The coefficients of the
polynomials are the bits, and the power of the independent variable is used to denote the
position of the bit in the word. The purpose of using the polynomial representation is to
define operations on the words using conventional polynomial arithmetic – polynomial
addition, subtraction, multiplication and division – except that the coefficients are taken
modulo 2 in the completed operations. Note that subtraction of polynomials is the same
as addition in binary arithmetic. This can be used to simplify the operations of division
of polynomials, as we will show below.

3 Division of Binary Polynomials

3.1 The Fundamental Definition of Division
Division of binary polynomials is based on the fundamental definition of division, which
we state here: a number n divided by a denominator d is characterized by a quotient q
and a remainder r which are related by

 n rq
d d
= + (3.1)

or, multiplying both sides by the denominator d,

 n d q r= ⋅ + (3.2)

where the remainder r is indivisible by the denominator d. For the purposes of
polynomial division, this means that the order of the remainder polynomial r is less than
that of the denominator polynomial d.

3.2 Division of Polynomials in General
Long division of polynomials uses (3.2) in recursively to reduce the order of the
numerator by one. Each such operation produces a “remainder” which is of order less
than that of the numerator.

We illustrate this process by writing the numerator and denominator polynomials
explicitly,

()

()

1
1 1 0

0

1
1 1 0

0

K K
K K

K
i

i
i

N N
N N

N
i

i
i

n x n x n x n x n

n x

d x d x d x d x d

d x

−
−

=

−
−

=

= ⋅ + ⋅ ⋅ +

= ⋅

= ⋅ + ⋅ ⋅ +

= ⋅

∑

∑

…

…
 (3.3)

If the order K of the numerator polynomial is less than the order N of the denominator
polynomial, then the quotient is zero and the remainder is the numerator polynomial; this

EE521 Analog and Digital Communications April 20, 2006

 Page 3 of 5

is a trivial case so we assume here that the order of the numerator exceeds that of the
denominator.

We can define a step that produces a form similar to that of (3.2) and leaves us with a
division operation in which the order of the numerator is reduced. We multiply the
denominator by () K N

K Nn d x −⋅ and subtract this product from the numerator:

() () ()1

1
1 1

K NK

N

NK
N N

N

nn x n x x d x
d

nn d x
d

−

−
− −

⎛ ⎞⎛ ⎞
= − ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

= − ⋅ ⋅ +⎜ ⎟
⎝ ⎠

…

 (3.4)

Now, we note that

 () () ()1
K NK

N

nn x d x x n x
d

−⎛ ⎞⎛ ⎞
= ⋅ ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.5)

which is of the same form as (3.2). We have identified the highest-order term of q(x) and
reduced the order of the numerator. If the order of n1(x) is less than that of d(x), we are
done, otherwise we repeat the operation with n1(x) as the numerator.

We pose operation as a recursion. To initialize, we set

() ()
()

0

0 0

n x n x

q x

=

=
 (3.6)

Each step reduces the order of the numerator and adds a term to the quotient:

() () ()

() ()

,
1

,
1

i K i K N i
i i

N

i K i K N i
i i

N

n
n x n x x d x

d

n
q x q x x

d

− − −
+

− − −
+

⎛ ⎞⎛ ⎞
= − ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= + ⋅⎜ ⎟

⎝ ⎠

 (3.7)

The recursion stops when the order of ni(x) is less than that of the denominator; the
remainder is this polynomial.

3.3 Division of Polynomials in Binary Arithmetic
Since binary arithmetic is far simpler than that for real numbers or ordinary integers, we
can simplify the polynomial division process. We recognize that dN is always 1 and that
subtraction is the same as addition. We initialize using (3.6). At each step, we examine
the highest order bit of ni(x), ni,K-i, and, if it is 1, we perform the operation

() () ()
() ()

1

1

K N i
i i

K N i
i i

n x n x x d x

q x q x x

− −
+

− −
+

= + ⋅

= +
 (3.8)

EE521 Analog and Digital Communications April 20, 2006

 Page 4 of 5

If the bit ni,K-i is zero, we do NOT perform (3.8) and simply go to the next i. Note that the
polynomial coefficients are taken modulo 2 after addition in (3.8).

3.4 Example Using a Spreadsheet
This recursion is very simple, and can be implemented with any spreadsheet. An Excel
implementation, with example, is included below.
Binary Polynomial Division

x^0 x^1 x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 x^11 x^12 x^13 x^14 x^15 x^16
Denominator polynomial

1 0 1 0 1 0 0 1 0 1 1
Numerator Polynomial

1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1

Division Process Yes/No Highe
Numerator 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1

x^6*d 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1
x^5*d 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1
x^4*d 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 1 1 0 0 1 1 0 0 1 1 1
x^3*d 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 0 1 0 1 1 0 0 1 0 1 1 0
x^2*d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum 1 0 1 0 1 1 0 0 1 0 1 1
x^1*d 1 0 1 0 1 0 1 0 0 1 0 1 1
Sum 1 1 1 1 1 0 0 0 0 0 0
x^0*d 0 0 0 0 0 0 0 0 0 0 0 0
Sum 1 1 1 1 1 0 0 0 0 0

Quotient 0 1 0 1 1 1 1

Remainder 1 1 1 1 1 0 0 0 0 0
Figure 1 Binary Polynomial Division with a Spreadsheet

Note that the columns headers are the powers of x in the polynomials. The original
numerator polynomial is bordered by a double line, and the denominator polynomial is
bordered by a single line.

In the table of values headed by Division Process, we begin with the numerator. This
is equivalent to the initialization given as (3.6). We then multiply the denominator by xN-

K (in this example, N is 16 and K is 10, so we multiply by x6. This shifts the bits of the
denominator so that the most significant bit falls below the most significant bit of the
numerator.

The most significant bit of the numerator now determines whether or not we execute
(3.8) at this iteration. This bit is copied to the column labeled Yes/No and also to the
most significant bit of the Quotient, the x6 term, near the bottom of the sheet.

At each iteration, the denominator is added to xK-N-i using binary arithmetic. If the most
significant bit of the denominator as carried to the Yes/No column is zero, as is the case

EE521 Analog and Digital Communications April 20, 2006

 Page 5 of 5

in two of the rows of the example, the corresponding entries for the bits of the
denominator are made zero by multiplying them by this bit.

3.5 Manual Computation
The execution of polynomial division with binary arithmetic is so simple that it can be
done by hand quickly, and the process is not particularly error-prone. In manual
execution of (3.8), you should follow the general format set in the spreadsheet example:

• Use column headings of x0, x1, x2, etc. and tabulate all your polynomial
coefficients under the corresponding column heading. This eliminates confusion
as to the bit position in succeeding computations, which is critical to keeping hand
computation simple.

• State the numerator and denominator polynomials in terms of the coefficients as
bits, using 0 and 1.

• Re-state the denominator polynomial, multiplied by the appropriate power of x
and placed in the corresponding columns for each coefficient.

• Use the most significant bit of the numerator at each step to determine the
corresponding bit of the quotient, and to determine whether (3.8) is to be
executed. Make this bit explicit at the next row, as with the Yes/No column in
the spreadsheet example, as well as in the quotient. This means that all elements
of a particular instance of (3.8) are right on the rows where they are needed to
understand and execute each row.

When you are done, you might check your work by executing (3.2) in binary arithmetic.

